Многие автоматические реакции, контролируемые головным мозгом, требуют одновременного управления большим числом различных мышц или иных органов тела. Одни нервные механизмы, задача которых состоит в определении реакции мышц и желез на те или иные постоянно действующие факторы внешней или внутренней среды, функционируют непрерывно; другие (число их весьма велико) осуществляют сложную «разовую» двигательную реакцию, элементы которой согласованы во времени и пространстве и пусковым стимулом для которой служит какой-либо специальный раздражитель.
Работа мозжечка представляет собой пример непрерывной автоматической регуляторной функции, весьма сложной и в то же время точной. Мозжечок образно сравнивали с чем-то вроде личного секретаря больших полушарий мозга. Он, по-видимому, получает общие указания о характере движения, которое по нашей воле должно совершить наше тело, и вырабатывает детальные инструкции, которые должны быть направлены большому числу мышц с целью обеспечить гладкое и уверенное выполнение задачи. Без надлежащего автоматического механизма компенсации небольшое смещение центра тяжести, вызванное поднятием правой руки, вероятно, заставило бы нас упасть. Мозжечок всегда готов к решению такого рода проблем. Он получает от всех мышц тела сигналы, сообщающие об их удлинении или сокращении, и дополняет эту информацию данными, непрерывно поступающими по нервным волокнам от отолитов и полукружных каналов, т. е. данными о положении головы и, в случае ее вращательного движения — скорости этого движения. Хотя сложные вычислительные операции, с помощью которых мозжечок достигает динамической стабилизации тела во время различных движений, еще далеко не ясны, они, по-видимому, связаны с характерной картиной электрических волн частотой от 200 до 400 герц. Эти электрические волны направляются в другие отделы головного мозга, где они накладываются на низкочастотные сигналы, характерные для внемозжечковых сенсорных и двигательных нейронов.
В вычислительной технике, по-видимому, можно найти хорошие аналогии действию мозжечка. Например, в электронном вычислительном устройстве, контролирующем полет самолета или управляемого снаряда, обычно используется схема, в которой детальная, непрерывно осуществляемая стабилизация полета отделена от функции общего навигационного управления. В такой схеме сигналы, предназначенные для управления рулями, дефлекторами ракетных сопел или иными «мышечными» органами, необходимыми для поддержания стабильного курса, вырабатываются в специальной вычислительной аппаратуре, решающей соответствующую систему уравнений на основе данных, получаемых от различных входных устройств (гироскопических стабилизаторов, акселерометров, гироскопических навигационных приборов и пр.). Эти устройства служат эквивалентами отолитов, полукружных каналов и рецепторов мышечного сокращения, а сама динамическая стабилизирующая подсистема представляется нам электронным аналогом мозжечка. В устройстве для автоматического управления самолетом или снарядом общая навигационная инструкция, необходимая для поворота, ускорения или замедления полета и т. п., вырабатывается на основе «сенсорных» данных, совершенно обособленных от только что описанных стабилизирующих входов. Эта навигационная инструкция служит направляющим или отклоняющим сигналом, который, накладываясь на стабилизирующие («мозжечковые») входы, приводит к желательному изменению курса па фоне плавного, непрерывного контроля со стороны динамической стабилизирующей подсистемы.
Стабилизирующие механизмы, конструируемые инженерами, содержат весьма сложные вычислительные схемы, отличающиеся высокой точностью. Есть все основания полагать, что эффективная, координированная работа десятков мышц при ходьбе, вставании и т. п. также требует от вычислительных механизмов головного мозга выполнения операций, эквивалентных решению математических уравнений, содержащих много членов, каждый из которых должен определяться и преобразовываться со значительной степенью точности.