Способ, которым организм защищает себя от перегревания, служит еще одним интересным примером регуляции, осуществляемой головным мозгом на основе обратной связи. Удаление избыточного тепла, накапливающегося в организме при высокой температуре окружающей среды или при интенсивной физической работе, осуществляется посредством двух главных механизмов. Один из них состоит в охлаждении тела за счет испарения пота, другой — в повышении теплоотдачи благодаря усилению кровотока в результате расширения сосудов кожи. Регулирующий центр этих механизмов охлаждения находится в гипоталамусе— образовании, расположенном в передней: части ствола мозга, очень близко к его переднему концу (рис. 14). Цепь системы терморегуляции несколько необычна: ее чувствительный орган находится внутри самой регулирующей системы, а не является периферическим рецептором, соединенным с системой обычным проводником. Для такого устройства есть серьезные основания. Функция системы терморегуляции состоит в поддержании постоянства температуры жизненно важных внутренних органов, а не поверхностных тканей, например кожи. Но сам гипоталамус, расположенный в передней части мозговою ствола и полностью окруженный корой и другими крупными отделами головного мозга, находится в таком защищенном и жизненно важном участке, какой только можно найти для измерения самого существенного температурного показателя организма — температуры самого мозга Таким образом, в данном случае природа выбрала для контрольного чувствительного устройства место в той части головного мозга, где осуществляются также и вычислительно-управляющие функции. Термочувствительные нейроны создают электрический потенциал, изменяющийся
| Рис. 14. Сагиттальный (проходящий в плоскости двусторонней симметрии) разрез ствола головного мозга и прилежащих к нему образований. |
при отклонении температуры крови в сосудах гипо-таламуса от желательной нормальной величины 37°. Этот электрический сигнал достигает окончаний многочисленных нервных волокон в мышечных стенках кровеносных сосудов, лежащих под самой кожей, а также нервов, управляющих потовыми железами. Например, когда измерение температуры гипоталамуса показывает, что температура крови в головном мозгу становится выше, чем следует, поверхностные сосуды расширяются и потовые железы начинают функционировать. Изменение температуры крови, протекающей через гипоталамус, всего лишь на несколько сотых градуса уже вызывает заметную реакцию охлаждающих механизмов.
Многие автоматические реакции, контролируемые головным мозгом, требуют одновременного управления большим числом различных мышц или иных органов тела. Одни нервные механизмы, задача которых состоит в определении реакции мышц и желез на те или иные постоянно действующие факторы внешней или внутренней среды, функционируют непрерывно; другие (число их весьма велико) осуществляют сложную «разовую» двигательную реакцию, элементы которой согласованы во времени и пространстве и пусковым стимулом для которой служит какой-либо специальный раздражитель.
Работа мозжечка представляет собой пример непрерывной автоматической регуляторной функции, весьма сложной и в то же время точной. Мозжечок образно сравнивали с чем-то вроде личного секретаря больших полушарий мозга. Он, по-видимому, получает общие указания о характере движения, которое по нашей воле должно совершить наше тело, и вырабатывает детальные инструкции, которые должны быть направлены большому числу мышц с целью обеспечить гладкое и уверенное выполнение задачи. Без надлежащего автоматического механизма компенсации небольшое смещение центра тяжести, вызванное поднятием правой руки, вероятно, заставило бы нас упасть. Мозжечок всегда готов к решению такого рода проблем. Он получает от всех мышц тела сигналы, сообщающие об их удлинении или сокращении, и дополняет эту информацию данными, непрерывно поступающими по нервным волокнам от отолитов и полукружных каналов, т. е. данными о положении головы и, в случае ее вращательного движения — скорости этого движения. Хотя сложные вычислительные операции, с помощью которых мозжечок достигает динамической стабилизации тела во время различных движений, еще далеко не ясны, они, по-видимому, связаны с характерной картиной электрических волн частотой от 200 до 400 герц. Эти электрические волны направляются в другие отделы головного мозга, где они накладываются на низкочастотные сигналы, характерные для внемозжечковых сенсорных и двигательных нейронов.