Теперь разсмотрим метод динамического программирования, поскольку хотя и было показано, что алгоритмы решения задачи об оптимальном наведении средств поражения на цель в нынешней цивилизации не могут не существовать, тем не менее необходимо содержательно обсудить ещё некоторые “само собой” разумеющиеся очевидности, касающиеся оптимального выбора траекторий многопараметрических переходных процессов.

Формализованный выбор оптимальной в некотором смысле траектории в n-мерном пространстве возможен, в частности на основе изпользования аппарата “динамического программирования”. Термин “динамическое программирование”, также как и термин “линейное программирование”, - прижившийся в Русском языке подстрочник, мало что говорящий о существе самого метода.

Аппарат динамического программирования позволяет решать задачи многопараметрической оптимизации в тех случаях, когда в силу разного рода объективно-математических причин (дискретность ограничений, нелинейности, нарушение свойства выпуклости и т.п.) аппарат линейного программирования неработоспособен. Вполне понятно, что он тоже не изучался и не изучается в большинстве вузовских курсов СССР и России на специальностях, в которых владение им придаёт квалификации специалистов КАЧЕСТВЕННО более высокий уровень.

<p><cite id="_Toc36964072"> </cite><cite id="_Toc26804159"> </cite> Метод динамического программирования</p><empty-line></empty-line><p>как алгоритмическое выражение</p><empty-line></empty-line><p>достаточно общей теории управления</p>

В изложении существа метода динамического программирования мы опираемся на книгу “Курс теории автоматического управления” (автор Палю де Ла Барьер: французское издание 1966 г., русское издание - “Машиностроение”, 1973 г.), хотя и не повторяем его изложения. Отдельные положения взяты из курса “Исследование операций” Ю.П.Зайченко (Киев, “Вища школа”, 1979 г.).

Метод динамического программирования работоспособен, если формальная интерпретация реальной задачи позволяет выполнить следующие условия:

1. Разсматриваемая задача может быть представлена как N-шаговый процесс, описываемый соотношением:

Xn + 1 = f(Xn, Un, n), где n - номер одного из множества возможных состояний системы, в которое она переходит по завершении n-ного шага; Xn - вектор состояния системы, принадлежащий упомянутому n-ному множеству; Un - управление, выработанное на шаге n (шаговое управление), переводящее систему из возможного её состояния в n-ном множестве в одно из состояний (n + 1)-го множества. Чтобы это представить наглядно, следует обратиться к рис. 4, о котором речь пойдёт далее.

2. Структура задачи не должна изменяться при изменении расчётного количества шагов N.

3. Размерность пространства параметров, которыми описывается состояние системы, не должна изменяться в зависимости от количества шагов N.

4. Выбор управления на любом из шагов не должен отрицать выбора управления на предъидущих шагах. Иными словами, оптимальный выбор управления в любом из возможных состояний должен определяться параметрами разсматриваемого состояния, а не параметрами процесса, в ходе которого система пришла в разсматриваемое состояние.

Чисто формально, если одному состоянию соответствуют разные предъистории его возникновения, влияющие на последующий выбор оптимального управления, то метод позволяет включить описания предъисторий в вектор состояния, что ведёт к увеличению размерности вектора состояния системы. После этой операции то, что до неё описывалось как одно состояние, становится множеством состояний, отличающихся одно от других компонентами вектора состояния, описывающими предъисторию процесса.

5. Критерий оптимального выбора последовательности шаговых управлений Un и соответствующей траектории в пространстве формальных параметров имеет вид:

V = V0(X0, U0) + V1(X1, U1) +…+ VN - 1(XN- 1, UN - 1) + VN(XN).

Критерий V принято называть полным выигрышем, а входящие в него слагаемые - шаговыми выигрышами. В задаче требуется найти последовательность шаговых управлений Un и траекторию, которым соответствует максимальный из возможных полных выигрышей. По своему существу полный “выигрыш” V - мера качества управления процессом в целом. Шаговые выигрыши, хотя и входят в меру качества управления процессом в целом, но в общем случае не являются мерами качества управления на соответствующих им шагах, поскольку метод предназначен для оптимизации управления процессом в целом, а эффектные шаговые управления с большим шаговым выигрышем, но лежащие вне оптимальной траектории, интереса не представляют. Структура метода не запрещает при необходимости на каждом шаге употреблять критерий определения шагового выигрыша Vn , отличный от критериев, принятых на других шагах.

Перейти на страницу:

Похожие книги