Теперь разсмотрим
Формализованный выбор оптимальной в некотором смысле траектории в
Аппарат динамического программирования позволяет решать задачи многопараметрической оптимизации в тех случаях, когда в силу разного рода объективно-математических причин (дискретность ограничений, нелинейности, нарушение свойства выпуклости и т.п.) аппарат линейного программирования неработоспособен. Вполне понятно, что он тоже не изучался и не изучается в большинстве вузовских курсов СССР и России на специальностях, в которых владение им придаёт квалификации специалистов КАЧЕСТВЕННО более высокий уровень.
Метод динамического программирования
как алгоритмическое выражение
достаточно общей теории управления
В изложении существа метода динамического программирования мы опираемся на книгу “Курс теории автоматического управления” (автор Палю де Ла Барьер: французское издание 1966 г., русское издание - “Машиностроение”, 1973 г.), хотя и не повторяем его изложения. Отдельные положения взяты из курса “Исследование операций” Ю.П.Зайченко (Киев, “Вища школа”, 1979 г.).
Метод динамического программирования работоспособен, если формальная интерпретация реальной задачи позволяет выполнить следующие условия:
1. Разсматриваемая задача может быть представлена как
2. Структура задачи не должна изменяться при изменении расчётного количества шагов
3. Размерность пространства параметров, которыми описывается состояние системы, не должна изменяться в зависимости от количества шагов
4. Выбор управления на любом из шагов не должен отрицать выбора управления на предъидущих шагах. Иными словами, оптимальный выбор управления в любом из возможных состояний должен определяться параметрами разсматриваемого состояния, а не параметрами процесса, в ходе которого система пришла в разсматриваемое состояние.
Чисто формально, если одному состоянию соответствуют разные предъистории его возникновения, влияющие на последующий выбор оптимального управления, то метод позволяет включить описания предъисторий в вектор состояния, что ведёт к увеличению размерности вектора состояния системы. После этой операции то, что до неё описывалось как одно состояние, становится множеством состояний, отличающихся одно от других компонентами вектора состояния, описывающими предъисторию процесса.
5. Критерий оптимального выбора последовательности шаговых управлений
V = V0(X0, U0) + V1(X1, U1) +…+ VN - 1(XN- 1, UN - 1) + VN(XN).
Критерий