Так как в бесконечном ряде, который должен представлять дробь как численность, исчезает та ее сторона, что она отношение, то исчезает и та сторона, что она, как показано выше, в самой себе имеет бесконечность. Но эта бесконечность вошла другим способом, а именно сам ряд бесконечен.

Какова эта бесконечность ряда - это явствует само собой; она дурная бесконечность прогресса. Ряд содержит и представляет следующее противоречие: нечто, будучи отношением и имея внутри себя качественную природу, изображается как лишенное отношений, просто как определенное количество, как численность. Следствием этого [противоречия] оказывается то, что в численности, выражаемой в ряде, всегда чего-то недостает, так что для того, чтобы достигнуть требуемой определенности, всегда нужно выходить за пределы того, что положено. Закон этого продвижения известен; он заключается в определении определенного количества, содержащемся в дроби, и в природе формы, в которой это определение должно быть выражено. Можно, правда, продолжая ряд, сделать численность столь точной, сколь это нужно. Однако изображение [численности ] посредством ряда всегда остается лишь долженствованием; оно обременено неким потусторонним, которое не может быть снято, так как попытка выразить в виде численности то, что основано на качественной определенности, есть постоянное противоречие.

В этом бесконечном ряде действительно имеется та неточность, которая в истинном математическом бесконечном встречается лишь как видимость. Не следует смешивать эти два вида математического бесконечного, точно так же как не следует смешивать оба вида философского бесконечного. Для изображения истинного математического бесконечного сначала пользовались формой ряда, и в новейшее время она опять была вызвана к жизни. Но она для него не необходима. Напротив, как станет ясно из последующего, бесконечное бесконечного ряда сущностно отличается от истинного математического бесконечного. Скорее он уступает [в этом отношении] даже такому выражению, как дробь.

А именно бесконечный ряд содержит дурную бесконечность, так как то, что он должен выразить, остается долженствованием, а то, что он выражает, обременено неисчезающим потусторонним и отличается от того, что должно быть выражено. Он бесконечен не из-за положенных членов, а потому, что они неполны, потому что иное, сущностно принадлежащее к ним, находится по ту сторону их; то, что в нем есть, хотя бы положенных членов было сколь угодно много, есть лишь конечное в собственном смысле этого слова, положенное как конечное, т. е. как такое, что не есть то, чем оно должно быть. Напротив, то, что называется конечным выражением или суммой такого ряда, безупречно; оно полностью содержит то значение, которого ряд только ищет; потустороннее возвращено из своего бегства; то, что этот ряд есть, и то, чем он должен быть, уже не разделено, а есть одно и то же.

Различает их, если говорить точнее, то, что в бесконечном ряде отрицательное находится вне его членов, которые имеются налицо, так как они признаются лишь частями численности. Напротив, в конечном выражении, которое есть отношение, отрицательное имманентно как определяемость сторон отношения друг другом, которая есть возвращение в себя, соотносящееся с собой единство как отрицание отрицания (обе стороны отношения даны лишь как моменты), и, следовательно, имеет внутри себя определение бесконечности. - Таким образом, обычно так называемая сумма, - или -,--- есть на самом деле отношение, и / 1 - а это так называемое конечное выражение есть истинно бесконечное выражение. Бесконечный ряд есть на самом деле скорее сумма; его цель - то, что в себе есть отношение, представить в форме некоторой суммы, и имеющиеся налицо члены ряда даны не как члены отношения, а как члены агрегата. Он, далее, есть скорее конечное выражение, ибо он несовершенный агрегат и остается по своему существу чем-то недостаточным. По тому, что в нем имеется, он определенный квант, но в то же время меньший, чем тот, которым он должен быть; и то, чего ему недостает, также есть определенный квант; эта недостающая часть есть на самом деле то, что называется в ряде бесконечным только с той формальной стороны, что она есть нечто недостающее, некоторое небытие; по своему содержанию она конечное определенное количество. Только то, что налично в ряде, совокупно с тем, чего ему недостает, составляет дробь, определенный квант, которым ряд также должен быть, но которым он не в состоянии быть. - Слово "бесконечное" также и в сочетании "бесконечный ряд" обычно кажется мнению чем-то возвышенным и величественным; это некоторого рода суеверие, суеверие рассудка. Мы видели, что оно сводится скорее к определению недостаточности.

Перейти на страницу:

Похожие книги