Стало быть, поскольку вышло так, что приращения или бесконечно малые разности рассматриваются лишь со стороны определенного количества, которое в них исчезает, и лишь как его предел, их понимают при этом как безотносительные моменты. Из этого вытекало бы не выдерживающее критики представление, будто в последнем отношении дозволительно приравнивать между собою, например, абсциссу с ординатой или же синус, косинус, тангенс, sinus versus и что угодно еще. Может казаться, что такое представление получает силу в том случае, когда дуга рассматривается как касательная; ибо и дуга, конечно, тоже несоизмерима с прямой линией, и ее элемент имеет прежде всего другое качество, чем элемент прямой линии. Может показаться еще более бессмысленным и недозволительным, чем смешение абсциссы, ординаты, sinus versus, косинуса и т. д. принимать круглые квадраты, принимать часть дуги, хотя бы и бесконечно малую, за кусочек касательной и, следовательно, трактовать ее как прямую линию. Однако такую трактовку следует, по существу, отличать от вызвавшего порицание смешения; она имеет свое оправдание в том, что в том треугольнике, который имеет своими сторонами элемент некоторой дуги и элемент ее абсциссы и ординаты, отношение остается тем же самым, как если бы элемент дуги был элементом прямой линии, касательной; углы, составляющие существенное отношение, т. е. то отношение, которое сохраняется в этих элементах, когда мы абстрагируемся от присущих им конечных величин, суть те же самые. Можно выразиться об этом и таким образом, что прямые линии как бесконечно малые стали кривыми линиями и отношение между ними при их бесконечности стало отношением между кривыми. Так как согласно дефиниции прямой линии она есть кратчайшее расстояние между двумя точками, то ее отличие от кривой линии основано на определении множества, на меньшем множестве различимого в этом расстоянии, что, стало быть, есть количественное определение. Но это определение в ней исчезает, когда мы принимаем ее за интенсивную величину, за бесконечный момент, за элемент; а вместе с тем исчезает и ее отличие от кривой линии, основанное исключительно только на различии определенного количества. Следовательно, как бесконечные прямая линия и дуга не сохраняют никакого количественного отношения друг к другу и тем самым на основании принятой дефиниции не имеют больше также и никакого качественного отличия друг от друга, а первая переходит во вторую.

Перейти на страницу:

Все книги серии Философия в кармане

Похожие книги