Математическое бесконечное интересно, с одной стороны, ввиду расширения [сферы] математики и ввиду великих результатов, достигнутых благодаря введению его в математику; с другой же стороны, оно достойно внимания по той причине, что этой науке еще не удалось посредством понятия (понятия в собственном смысле) обосновать правомерность его применения. Все обоснования зиждутся в конечном счете на правильности результатов, получающихся при помощи этого определения, правильности, доказанной из других оснований, но не на ясности предмета и действий, благодаря которым достигнуты эти результаты; более того: признается даже, что сами эти действия неправильны.

Это уже само по себе недостаток; такой образ действия ненаучен. Но он влечет за собой еще и тот вред, что математика, не зная природы этого своего орудия из-за того, что не справилась с его метафизикой и критикой, не могла определить сферу его применения и предохранить себя от злоупотребления им.

В философском же отношении математическое бесконечное важно потому, что в его основе действительно лежит понятие истинного бесконечного и оно куда выше, чем обычно называемое так метафизическое бесконечное, исходя из которого выдвигаются против него возражения. От этих возражений математическая наука часто умеет спасаться лишь тем, что она отвергает компетенцию метафизики, утверждая, что ей нет дела до этой науки, что ей нечего заботиться о ее понятиях, если только она действует последовательно на своей собственной почве. Она-де должна рассматривать не то, что истинно в себе, а то, что истинно в ее области. При всех своих возражениях против математического бесконечного метафизика не может отрицать или опровергнуть блестящие результаты, которые дало его применение, а математика не в состоянии точно выяснить метафизику своего собственного понятия, а потому не в состоянии также и дать основание (Ableitung) тех приемов, которые делает необходимыми применение бесконечного.

Если бы над математикой тяготело одно лишь затруднение, причиняемое понятием вообще, то она могла бы без околичностей оставить его в стороне, поскольку именно понятие есть нечто большее, чем только указание сущностных определенностей, т. е. рассудочных определений той или иной вещи, а упрекнуть математику в недостаточной строгости этих определенностей никак нельзя; [она могла бы оставить в стороне это затруднение], ибо не принадлежит к тем наукам, которые должны иметь дело с понятиями своих предметов и образовать свое содержание через развитие понятия, хотя бы только путем резонерства. Но применяя метод своего бесконечного, она находит главное противоречие в самом характерном для нее методе, на котором она вообще основывается как наука. Ибо исчисление бесконечного разрешает и требует таких приемов, которые она должна отвергать, оперируя конечными величипами, и в то же время она обращается со своими бесконечными величинами как с конечными определенными количествами и хочет применять к первым те же приемы, которые применяются к последним. Очень важно для развития этой науки то, что она нашла для трансцендентных определений и действий над ними форму обычного исчисления (Kalküls).

Перейти на страницу:

Все книги серии Всемирное наследие

Похожие книги