При всей этой противоречивости своих действий математика показывает, что результаты, которые она получает посредством их, вполне совпадают с теми, которые она получает с помощью собственно математического метода, геометрического и аналитического метода. Однако, с одной стороны, это касается не всех результатов, и цель введения [математического] бесконечного не только сокращение обычного пути, а достижение результатов, которых последний дать не может. С другой же стороны, успех сам по себе не может служить оправданием характера пути (die Manier des Wegs). А этот характер исчисления бесконечного отягощен видимостью неточности, которую он сам себе придает, увеличивая конечные величины на бесконечно малую величину и отчасти сохраняя эту последнюю в дальнейших действиях, отчасти же и пренебрегая ею. Этот прием заключает в себе ту странность, что, несмотря на признаваемую неточность, получается результат, который не только довольно точен и столь близок [к истинному результату], что можно не обращать внимания на разницу, но и совершенно точен. В самом же действии, предшествующем результату, нельзя обойтись без представления, что некоторые величины не равны нулю, но они столь незначительны, что их можно оставить без внимания. Однако в том, что понимают под математической определенностью, совершенно отпадает всякое различие между большей или меньшей точностью, подобно тому как в философии может идти речь не о большей или меньшей вероятности, а единственно лишь об истине. Если метод и применение бесконечного и находят оправдание в успехе, то все же требовать их обоснования не так излишне, как представляется излишним, например, требование доказать право пользоваться собственным носом{40}. Ведь в математическом познании как познании научном существенное значение имеет доказательство, а в отношении получаемых результатов также оказывается, что строго математический метод не для всех их доставляет аргумент успеха, который к тому же есть лишь внешний аргумент.

Стоит рассмотреть более внимательно математическое понятие бесконечного и наиболее замечательные попытки, которые ставят себе целью найти оправдание в пользовании им и устранить затруднение, отягчающее метод. Рассмотрение таких оправданий и определений математического бесконечного, которые я намерен изложить в этом примечании более пространно, бросит в то же время наиболее яркий свет и на самое природу истинного понятия и покажет, как оно представлялось и легло в основу этих попыток.

Обычное определение математического бесконечного гласит, что оно есть величина, больше которой, если она определена как бесконечно большая, или меньше которой, если она определена как бесконечно малая, уже нет или – в другой формулировке – как величина, которая в первом случае больше, а во втором меньше любой другой величины. – В этой дефиниции выражено, конечно, не истинное понятие, а скорее, как уже отмечено, лишь то же противоречие, что и в бесконечном прогрессе. Но посмотрим, что содержится в ней в себе. Величина определяется в математике как то, чтó может быть увеличено или уменьшено, следовательно, вообще как безразличная граница. И вот, так как бесконечно большое или бесконечно малое есть нечто такое, что уже больше не может быть увеличено или уменьшено, то оно на самом деле уже не определенное количество как таковое.

Этот вывод необходим и непосредствен. Но именно это соображение, что определенное количество, – а я называю в этом примечании определенным количеством вообще то, что оно есть, [а именно] конечное определенное количество, – снято, обычно не приходит на ум, а между тем оно-то и составляет затруднение для обыденного понимания, так как требуется, чтобы определенное количество, когда оно бесконечно, мыслилось как нечто снятое, как нечто такое, что не есть определенное количество, но количественная определенность чего все же сохраняется.

Перейти на страницу:

Все книги серии Всемирное наследие

Похожие книги