В этом примере качественный смысл есть то, от чего ставится в зависимость способ действия. В связи с этим мы можем тотчас же привести общее утверждение, что все затруднение с принципом было бы устранено, если бы вместо формализма, исходя из которого определение дифференциала усматривают лишь в задаче, дающей ему это имя, [т. e.] в отличии вообще функции от ее изменения после того, как ее переменная величина получила некоторое приращение, – если бы вместо этого формализма было указано качественное значение принципа и действие было поставлено в зависимость от этого качественного значения. В этом смысле дифференциал от хп полностью исчерпан первым членом ряда, получающегося путем разложения (x+dx)n. Таким образом, остальные члены не принимаются во внимание не из-за их относительной малости; здесь не предполагается никакой такой неточности, погрешности или ошибки, которая бы исправлялась и устранялась другой ошибкой, – взгляд, исходя главным образом из которого Карно обосновывает правомерность обычного метода исчисления бесконечно малых. Так как дело идет не о сумме, а об отношении, то дифференциал полностью находят посредством первого члена; там же, где есть нужда в новых членах, в дифференциалах высших разрядов, их нахождение (Bestimmung) состоит не в продолжении ряда как суммы, а в повторении одного и того же отношения, единственно которое имеют в виду и которое, стало быть, полностью имеется уже в первом члене. Потребность в форме некоторого ряда, в суммировании этого ряда и все, чтó связано с этим, должны в таком случае быть совершенно отделены от указанного интереса отношения.

Разъяснения, даваемые Карно относительно метода бесконечных величин, – это наиболее ясное и четкое изложение того, что нам встретилось в указанных выше представлениях. Но при переходе к самим действиям у него в той или иной мере появляются обычные представления о бесконечной малости опускаемых членов по сравнению с другими. Он оправдывает метод не столько самой природой вещей, сколько тем фактом, что результаты оказываются правильными, и полезностью введения неполных уравнений, как он их называет (т. е. таких, в которых осуществляют такое арифметически неправильное отбрасывание), для упрощения и сокращения исчисления.

Лагранж, как известно, вновь принял первоначальный метод Ньютона, метод рядов, чтобы избавиться от трудностей, связанных с представлением о бесконечно малом, равно как и с методом первых и последних отношений и пределов. Относительно его исчисления функций, прочие преимущества которого в отношении точности, абстрактности и всеобщности достаточно известны, мы должны отметить – поскольку это касается нашей темы – лишь то, что оно исходит из основного положения, что разность, не превращаясь в нуль, может быть принята столь малой, что каждый член ряда превосходит по величине сумму всех следующих за ним членов. – При этом методе также начинают с категорий приращения и разности функции, переменная величина которой получает приращение, что и вызывает появление докучливого ряда; равно как в дальнейшем члены ряда, которые должны быть опущены, принимаются в соображение, лишь поскольку они составляют некоторую сумму, и основание, почему они отбрасываются, усматривается в относительности их определенного количества. Отбрасывание, следовательно, и здесь не сводится вообще к точке зрения, встречающейся, с одной стороны, в отдельных видах применения, в которых, как мы упомянули раньше, члены ряда должны иметь определенное качественное значение и часть из них оставляется без внимания не потому, что они незначительны по величине, а потому, что они незначительны по качеству; с другой же стороны, отбрасывание зависит от той существенной точки зрения, которая определенно выступает у Лагранжа относительно так называемых дифференциальных коэффициентов лишь в так называемом применении дифференциального исчисления, чтó мы подробнее разъясним в следующем примечании.

Перейти на страницу:

Все книги серии Всемирное наследие

Похожие книги