Вместе с параллельными линиями и в параллелограммах появляется, как мы отметили, новое обстоятельство: отчасти равенство одних только углов, отчасти же высота фигур, от которой отличны внешние границы последних, стороны параллелограммов. При этом возникает сомнение, следует ли в этих фигурах – кроме определенности одной стороны, основания, которое дано как внешняя граница, – принимать в качестве другой определенности другую внешнюю границу (а именно другую сторону параллелограмма) или высоту? Если даны две такие фигуры, имеющие одинаковое основание и высоту, причем одна из них прямоугольная, а другая с очень острыми углами (и, стало быть, с очень тупыми противолежащими углами), то последняя фигура легко может показаться созерцанию большей, чем первая, поскольку созерцание берет предлежащую большую сторону ее как определяющую и поскольку оно по способу представления Кавальери сравнивает площади по тому или иному множеству параллельных линий, которыми они могут быть пересечены; [согласно этому способу представления], бóльшую сторону [остроугольного параллелограмма] можно было бы рассматривать как возможность большего количества линий, чем у вертикальной стороны прямоугольника. Однако такое представление не служит возражением против метода Кавальери; ибо множество параллельных линий, представляемое в этих двух параллелограммах для сравнения, предполагает в то же время одинаковость их расстояний друг от друга или от основания, из чего следует, что другим определяющим моментом служит высота, а не другая сторона параллелограмма. Но далее это меняется, когда мы сравниваем между собой два параллелограмма, имеющие одинаковые основание и высоту, но лежащие не в одной плоскости и образующие с третьей плоскостью разные углы; здесь параллельные сечения, возникающие, когда представляют себе их пересеченными третьей плоскостью, движущейся параллельно себе самой, уже не одинаково удалены одно от другого, и эти две плоскости неравны между собой. Кавальери обращает особое внимание на это различие, которое он определяет как различие между transitus rectus и transitus obliquus{54} неделимых (как в Exercit. I n. XII сл., так уже в Geоmetr. I, II), и этим он устраняет поверхностное недоразумение, могущее возникнуть с этой стороны. Я припоминаю, что Барроу в своем упомянутом выше сочинении (Lect. geom., II, p. 21), хотя также пользуется методом неделимых, но, нарушая его чистоту, соединяет его с перешедшим от него к его ученику Ньютону и к другим современным ему математикам, в том числе и к Лейбницу, признанием возможности приравнять криволинейный треугольник, как, например, так называемый характеристический, прямолинейному, поскольку оба бесконечно, т. е. очень малы, – я припоминаю, что Барроу приводит подобное возражение Такэ{55}, остроумного геометра того времени, также пользовавшегося новыми методами. Имеющееся у последнего сомнение касается также вопроса о том, какую линию – а именно при вычислении конических и сферических поверхностей – следует принимать за основной момент определения для рассуждения, основанного на применении дискретного. Такэ возражает против метода неделимых, утверждая, что при вычислении поверхности прямоугольного конуса по этому атомистическому методу треугольник, [получаемый при продольном рассечении] конуса, изображается составленным из прямых, параллельных основанию линий, перпендикулярных к оси и представляющих собой в то же время радиусы тех кругов, из которых состоит поверхность конуса. Если же эта поверхность определяется как сумма окружностей, а эта сумма определяется из численности их радиусов, т. е. из длины оси конуса, из его высоты, то получаемый результат противоречит сформулированной и доказанной еще Архимедом истине. В ответ на это возражение Барроу показывает, что для определения поверхности конуса не его ось, а сторона треугольника, [получаемого при продольном рассечении] конуса, должна быть принята за ту линию, вращение которой образует эту поверхность и которая, а не ось, должна поэтому считаться определенностью величины для множества окружностей.

Перейти на страницу:

Все книги серии Всемирное наследие

Похожие книги