Как следует нам обращаться с уравнениями математической физики? Должны ли мы просто выводить из них все следствия и рассматривать их как неощущаемые реальности? Нет, далеко не так. Главным образом они должны нас учить тому, что можно и что следует в них изменять. Только таким образом мы можем извлечь из них что-либо полезное.

Третий пример покажет нам, каким образом можем мы заметить математические аналогии в ряду явлений, с физической точки зрения не состоящих ни в кажущемся, ни в реальном соотношении такого рода, чтобы законы одного из этих явлений помогали нам догадываться о законах другого.

Одно и то же уравнение Лапласа встречается в теориях ньютоновского тяготения, движения жидкостей, электрического потенциала, в теории магнетизма, в теории теплопроводности и еще во многих других.

Что отсюда следует? Эти теории кажутся изображениями, скопированными одно с другого; они взаимно освещают одна другую, заимствуя друг у друга свой язык. Спросите у специалистов по теории электричества, не радуются ли они изобретению понятия о силовом потоке, внушенного гидродинамикой и теорией теплоты. Итак, математические аналогии не только дают нам возможность предчувствовать физические аналогии, но не перестают быть полезными и в том случае, когда последние оказываются ошибочными.

Резюмируем сказанное. Цель математической физики заключается не только в том, чтобы облегчить физику вычисление некоторых постоянных или интегрирование некоторых дифференциальных уравнений.

Она состоит еще в том, чтобы знакомить физика со скрытой гармонией вещей, показывая их ему под новым углом зрения.

Из всех сторон анализа наиболее возвышенны, наиболее, так сказать, прозрачны как раз те, которые будут наиболее плодотворны в руках, умеющих ими пользоваться.

III

Посмотрим теперь, чем анализ обязан физике.

Нужно было бы окончательно забыть историю науки, чтобы не помнить, что стремление познать природу имело самое постоянное и самое счастливое влияние на развитие математики.

Во-первых, физик ставит перед нами проблемы, решения которых он ждет от нас. Но задавая нам эти проблемы, он тем самым уже щедро оплачивает услугу, которую мы ему можем оказать, если нам удастся их разрешить.

Я позволю себе продолжить сравнение с изящными искусствами. Если бы чистый математик забыл о существовании внешнего мира, то он уподобился бы художнику, который умеет гармонически сочетать краски и формы, но у которого нет моделей. Его творческая сила скоро иссякла бы.

Числа и символы могут образовать бесконечное множество сочетаний. Как нам выбрать из этого множества те сочетания, которые заслуживали бы нашего внимания? Подчинимся ли мы исключительно руководству нашей прихоти? Эта прихоть, которая к тому же сама скоро выдохлась бы, увлекла бы нас, без сомнения, далеко друг от друга, и мы скоро перестали бы понимать друг друга.

Но это еще менее важная сторона вопроса.

Физика, без сомнения, помешает нам впасть в заблуждение, но она предохранит нас от еще более грозной опасности; она воспрепятствует нам безостановочно вращаться в одном и том же кругу. История показывает, что физика не только побуждала нас к выбору из целого множества представлявшихся нам проблем; она также ставила перед нами такие проблемы, о которых мы без нее никогда и не подумали бы.

Как ни разнообразна фантазия человека, природа еще в тысячу раз богаче. Чтобы следовать за нею, нам приходится вступать на пути, на которые мы не обращали внимания; а эти пути приводят нас часто к вершинам, откуда мы открываем новые кругозоры. Что может быть более полезно!

О математических символах можно сказать то же, что о физических реальностях. Только сравнивая различные стороны вещей, мы будем в состоянии понять их внутреннюю гармонию, которая одна только прекрасна и, следовательно, достойна наших трудов.

Первый пример, какой я приведу, настолько стар, что могло бы явиться искушение его забыть. Тем не менее он важнее всех прочих.

Единственный естественный предмет математической мысли есть целое число. Непрерывность была внушена нам внешним миром. Она, без сомнения, изобретена нами, но изобрести ее нас вынудил внешний мир.

Без него не было бы анализа бесконечно малых. Все математическое знание свелось бы к арифметике или к теории подстановок.

Но мы, напротив, посвятили изучению непрерывности почти все наше время, почти все наши силы. Кто пожалеет об этом? Кто станет считать, что это время и эти силы были потеряны?

Анализ развертывает перед нами безграничные перспективы, о которых не подозревает арифметика. Он показывает нам с одного взгляда грандиозный ансамбль, распорядок которого прост и симметричен, напротив того — в теории чисел, где царит непредвиденность, взор встречает препятствия на каждом шагу.

Вам, без сомнения, скажут, что вне целого числа нет строгости, а следовательно, нет математической истины, что оно скрывается всюду и что нужно стараться разоблачить его покровы, хотя бы для этого пришлось обречь себя на нескончаемые повторения.

Перейти на страницу:

Похожие книги