Можно предложить не такое универсальное, зато более простое и менее ресурсоемкое решение с помощью обратных вызовов(Рис. 3). Код опроса упаковывается в отдельный компонент. Перед началом работы происходит настройка, т. е. указанный код как аргумент сохраняется в рабочем коде контроллера. В нужный момент рабочий код делает обратный вызов, выполняет соответствующую функцию и получает требуемое значение. Если необходимо, в процессе работы можно изменять хранимый аргумент, изменяя, таким образом, код опроса датчиков.

Рис. 3. Опрос датчиков с помощью обратного вызова

<p>1.2.2. Вычисления по запросу</p>

Представим, что мы разрабатываем супербыстрый алгоритм сортировки, оптимизированный для работы на нашем многопроцессорном суперкомпьютере. Было потрачено массу усилий, реализовано много кода, и, наконец, алгоритм почти готов. Но вот незадача: мы не знаем заранее, что именно нам нужно сортировать. Сортировка чисел – это самый простой случай, а что делать, если понадобится сортировать, допустим, структуры, содержащие записи из базы данных? Пусть в структуре содержатся сведения о сотрудниках – фамилия, имя, отчество. Как реализовать сортировки по отдельным полям, по совокупности полей? Неужели придется дублировать код для каждого случая?

Простое и эффективное решение указанной проблемы представлено на Рис. 4. Код для сравнения полей упаковывается в отдельный компонент. Когда запускается алгоритм, этот компонент передается как аргумент. В требуемый момент времени алгоритм через указанный аргумент вызовет код сравнения, передавая элементы данных как параметры. Таким образом, можно реализовать различные правила сравнения и передавать их алгоритму без изменения рабочего кода.

Рис. 4. Результат вычисления с помощью обратного вызова

<p>1.2.3. Перебор элементов</p>

Представим, что мы разрабатываем модуль сетевого обмена. Как пользователю узнать, какие протоколы поддерживаются?

Самое простое решение – получить количество поддерживаемых протоколов, а затем запрашивать их имена по порядковому номеру. Данный способ легко реализуем, если внутри модуля имена протоколов хранятся в массиве. А если имена нужно хранить в списке? Тогда задача усложняется: нужно сделать перебор элементов списка, чтобы получить нужное значение по порядковому номеру. А если имена должны храниться в виде двоичного дерева?

Возможное решение: разработать итератор – специальный класс, который будет осуществлять навигацию по контейнеру. Такой подход реализован, к примеру, в стандартной библиотеке STL, где для каждого контейнера имеется соответствующий итератор. Недостаток этого решения проявляется в том, что мы ограничиваем сферу применения модуля, построенного таким образом: его использовать могут только те компоненты, которые способны интерпретировать вызовы методов C++. Кроме того, итератор привязан к типу используемого контейнера, и при его изменении приходится перекомпилировать все связанные компоненты.

А что, если реализовать итератор с помощью набора функций, без использования классов? Интерфейс получается довольно сложным: необходимы отдельные функции для создания итератора, запроса значений, уничтожения итератора; необходимо объявить тип данных для хранения итератора; необходимо предусмотреть уничтожение итератора в случае возникновения исключений.

Простое и эффективное решение указанных проблем представлено на Рис. 5. Код, обрабатывающий имена поддерживаемых протоколов (например, отображение в пользовательском интерфейсе), упаковывается в отдельный компонент. Для получения протоколов вызывается функция, в которую указанный компонент передается как аргумент. Функция перебирает хранимые значения, для каждого значения через сохраненный аргумент вызывается код обработки, имя протокола передается как параметр.

Рис. 5. Просмотр элементов с помощью обратных вызовов

<p>1.2.4. Уведомление о событиях</p>

Представим, что мы в системе запустили таймер, и нам нужно получить уведомление о срабатывании таймера. Самое простое решение – в процессе выполнения опрашивать таймер и анализировать, не истекло ли время. Как часто нужно делать опрос? Слишком часто – теряется производительность, слишком редко – теряется точность. Кроме того, приходится постоянно в определенных участках кода вставлять вызов опроса. Учитывая, что в программе могут работать несколько потоков, опрашивать таймер они будут с разной частотой, и каждый поток обнаружит срабатывание таймера в разное время.

Простое и эффективное решение указанных проблем представлено на Рис. 6. Код, обрабатывающий срабатывание таймера, упаковывается в отдельный компонент. Когда запускается таймер, этот компонент как аргумент передается таймеру, и когда таймер сработает, через сохраненный аргумент будет вызван код обработки. По такому же принципу можно организовать асинхронный ввод-вывод, обработку прерываний и т. п.

Рис. 6. Уведомление о срабатывании таймера с помощью обратного вызова

Перейти на страницу:

Похожие книги