Нам достаточно изучить уравнения квантовой механики и правила обращения с ними. После этого мы можем предсказать все: как изменится цвет тела при нагревании, какие спектральные линии оно при этом испустит и как изменится их частота, если поместить тело в электрическое или магнитное поле. Мы можем предсказать форму кристаллов, их теплоемкость и электропроводность. Мы можем, наконец, построить атомную электростанцию и атомный ледокол — и они будут исправно работать. И все это — без малейших ссылок на истинную форму атома.
На этом основании многие (с легкой руки Гейзенберга) предлагают обходиться в квантовой механике вообще без наглядных образов. Целесообразность такой крайности можно оспаривать, но отрицать ее возможность безоговорочно нельзя. На вопрос: «Что такое атом?»— сторонники крайних мер отвечают лаконично: «Атом есть система дифференциальных уравнений». К сожалению, в этой шутке много правды. По сравнению с целым арбузом «атом арбуза» очень беден свойствами. Однако свойства эти противоречивы и слить их воедино без насилий над логикой и здравым смыслом можно только в уравнениях квантовой механики.
Представьте, что вы стоите перед зеркалом в зеленом свитере и вдруг замечаете, что ваше отражение в зеркале одето в красный свитер. Прежде всего вы, вероятно, протрете глаза, а если это не поможет, пойдете к врачу. Потому что «так не бывает». В самом деле, зеленые лучи — это волны, длина которых
Чудо это можно понять, если вспомнить гипотезу Эйнштейна о квантах света, которую он предложил для объяснения явлений фотоэффекта. Следуя ему, вместо рентгеновских волн с длиной
Если атом полностью поглотит квант света (
Оба эти опыта можно провести в камере Вильсона, проследить путь каждого выбитого электрона и тем самым наглядно представить процесс столкновения световых квантов с электронами.
Но в таком случае, что нам мешает увидеть себя в красном свитере? Оказывается, все те же квантовые законы, которые запрещают электрону поглощать произвольные порции энергии. Электрон на стационарной орбите в атоме может поглотить только такой квант, который либо перебросит его из одного стационарного состояния в другое (вспомните опыт Франка и Герца), либо выбросит его из атома (опыты Ленарда, Столетова, Милликена). Энергия «зеленых квантов» (2,5 эВ) слишком мала, чтобы вырвать электрон из атома (