2.2. Запишем данное число n в виде
2.3. Число n делится на 5k в том и только в том случае, если на 5k делится число n0, полученное из числа n отбрасыванием всех его цифр, кроме k последних. Действительно, запишем число n в виде
2.4. Число n делится на 2k в том и только в том случае, если на 2k делится число n0, полученное из числа n отбрасыванием всех его цифр, кроме к последних. Данное утверждение следует из представления числа n в виде
2.5. Проще всего в данном двузначном числе выделить наибольшее возможное четное число десятков (ведь любое число, кратное 20, кратно и 4), в результате чего останется число, меньшее 20, для которого проверка делимости на 4 уже не представляет труда. Например, число
2.6. Заметим, что любое четное число сотен делится на 8, а нечетное дает при делении на 8 остаток 4 и недостаток - 4. Поэтому, отбросив цифру сотен данного трехзначного числа, достаточно проверить, делится ли на 8 оставшееся двузначное число в чистом виде, если цифра сотен была четной, либо предварительно увеличенное или уменьшенное на 4, если цифра сотен была нечетной. Кроме того, для упрощения проверки делимости на 8 двузначного числа можно выделить в нем наибольшее возможное число десятков, кратное 4, в результате чего останется число, меньшее 40, для которого проверка делимости на 8 уже не представляет труда. Например, число 692 не делится на 8, так как
2.7. Пусть данное число n имеет вид
Поскольку
В полученном представлении числа n первое выражение делится как на 3, так и на 9, поэтому остатки от деления числа n и суммы всех его цифр
2.8. Для упрощения проверки делимости суммы цифр данного числа на 3 можно заменять цифры их остатками или недостатками от деления на 3. Например, сумма цифр числа 2 795 438 дает тот же остаток при делении на 3, что и сумма
2.9. Для упрощения проверки делимости суммы цифр данного числа на 9 можно отбрасывать те цифры, которые в сумме дают 9 или 18. Например, сумма цифр числа 7 543 782 861 дает тот же остаток при делении на 9, что и число 6, поскольку сумма всех остальных цифр
2.10. Пусть число m k-значное. Тогда среди чисел от
2.11. Описанная в задаче проверка сложения основана на том, что если при подсчете суммы нескольких чисел не было сделано ошибки, то эта сумма должна давать тот же остаток при делении на какое-либо число m, что и сумма остатков от деления слагаемых на m. При этом нахождение остатков от деления на m = 9 по сумме цифр не требует серьезных усилий, что и нашло отражение в предложенном способе. Если складывались числа разного знака, то сумма всех положительных слагаемых должна давать тот же остаток при делении на m, что и сумма всех отрицательных слагаемых вместе с полученным в ответе числом. Для нахождения этих остатков при m = 9 достаточно заменить сами числа суммами их цифр.
2.12. Описанная в задаче проверка умножения основана на том, что если при подсчете произведения нескольких чисел не было сделано ошибки, то это произведение должно давать тот же остаток при делении на m (в задаче взято m = 9), что и произведение остатков от деления сомножителей на m. Проверка деления числа а на число b, в результате которого получены частное q и остаток r, сводится к проверке равенства
т. е. двух операций сразу: умножения и сложения. Это можно сделать, сравнив остатки от деления на m числа а и числа