Я не являюсь особым знатоком математики (это мягко сказано), но даже я могу видеть в этом очарование. И еще больше мне нравится, что тот же самый принцип работает для любых тел, не только для таких аккуратных, как кубы и сферы, но и для тел сложной формы: животных и частей животных, таких как почки и мозг. Все, что требуется – чтобы изменение размера сопровождалось простым увеличением или сжатием, без изменения формы. Это дает нам своего рода нереальные перспективы сравнивать реальные размеры. Когда один вид животных в 10 раз длинней другого, то их масса будет в 1 000 раз большей, но только если их форма одинакова. Фактически же формы, весьма вероятно, эволюционировали, становясь систематически различными, если двигаться от маленьких животных к большим, и мы можем теперь понять, почему.
Большие и малые животные должны иметь различную форму, если учитывать правила масштабирования площади/объема, которые мы только что рассмотрели. Если бы Вы превратили землеройку в слона, только равномерно увеличивая ее, сохраняя ту же самую форму, то она бы не выжила. Поскольку она теперь была бы приблизительно в миллион раз тяжелее, возникло бы много новых проблем. Некоторые из проблем животных зависят от объема (массы). Другие зависят от площади поверхности. Еще другие зависят от некоторой сложной функции этих двух величин или нескольких различных факторов вместе. Как скорость растворения куска сахара, скорость потери тепла животного или потери воды через кожу будет пропорциональна поверхности, которую оно представляет внешнему миру. Но его скорость выработки тепла, вероятно, сильнее связана с числом клеток в теле, которое является функцией объема.
У землеройки, приведенной к масштабу слона, были бы веретенообразные ноги, которые сломались бы под весом, и ее тонкие мышцы были бы слишком слабы, чтобы работать. Сила мышцы пропорциональна не ее объему, а площади ее поперечного сечения. Это справедливо потому, что мускульное движение – суммарное движение миллионов молекулярных волокон, скользящих друг мимо друга параллельно. Число волокон, которые Вы можете упаковать в мышцу, зависит от площади ее поперечного сечения (вторая степень линейного размера). Но задача, которую мышца должна выполнять – поддержка слона – пропорциональна массе слона (третья степень линейного размера). Так слон нуждается в пропорционально большем количестве мышечных волокон, чем землеройка, чтобы поддержать свою массу. Поэтому поперечное сечение мышц слона должно быть большим, чем Вы ожидали бы при простом масштабировании, и объем мышц слона также должен быть больше, чем Вы ожидали бы при простом масштабировании. По различным специфическим причинам подобное заключение справедливо и для костей. По этой причине большие животные, вроде слонов, имеют массивные ноги, подобные стволам деревьев. Галилей был одним из первых, кто понял это, хотя его диаграмма преувеличивает истинный результат.
Предположим, что животное размером со слона в 100 раз больше животного размером с землеройку. Без изменения формы площадь поверхности его кожи была бы в 10 000 раз большей, чем у землеройки, и его объем и масса были бы в миллион раз большими. Если сенсорно-тактильные клетки будут одинаково располагаться на коже, то слону их будет необходимо в 10 000 раз больше, и область мозга, обслуживающая их, возможно, должна быть пропорционально увеличена. Общее количество клеток в теле слона будет в миллион раз большим, чем у землеройки, и они все должны быть обслужены капиллярными кровеносными сосудами. Как это отразится на количестве миль кровеносных сосудов, которое мы ожидаем у большого животного, в отличие от маленького? Это – сложное вычисление, и к нему мы возвратимся в более позднем рассказе. В настоящий момент этого нам достаточно, чтобы понять, что когда мы производим эти расчеты, мы не можем игнорировать правила вычисления для объемов и площадей поверхности. И логарифмический график – хороший метод для того, чтобы получить интуитивные ключи к разгадке подобных вещей. Главный вывод состоит в том, что, поскольку животные становятся большими или меньшими в ходе эволюции, мы, безусловно, ожидаем, что их форма изменится в предсказуемых направлениях.