яятия ложны или неправильны, потому что они являются метафизическими. Ничто не может быть объявлено ни истинным, ни ложным на таком основании. Назвать какое-либо положение метафизическим или нет — мало чему поможет. Вопрос состоит в том, является ли оно ясным или расплывчатым, правильным (right) или неправильным, хорошо или плохо обоснованным?

49. Хотя мгновенные приращения, зарождающиеся и исчезающие величины, флюксии и бесконечно малые величины всех степеней являются в действительности такими призрачными (shadowy) существами, которые так трудно отчетливо вообразить или представить себе, что их (мягко выражаясь) нельзя признать в качестве принципов или объектов ясной и точной науки; и хотя одной этой неясности и непонятности вашей метафизики было бы достаточно, чтобы лишить силы ваши претензии на доказанность вашей теории, — тем не менее, если я не ошибаюсь, было, кроме того, показано, что ваши выводы правильны в той же мере, в какой ясны ваши концепции, и что ваша логика так же предосудительна, как ваша метафизика. Поэтому в целом должно представляться, что ваши выводы не получены путем правильных рассуждений яа основе четких принципов; что, следовательно, занятия современных аналитиков, какими бы полезными они ни были для математических расчетов и построений, не приучают и не подготавливают ум к тому, чтобы ясно воспринимать и делать правильные выводы, и что, следовательно, в силу таких обстоятельств, вы не имеете права давать указания по вопросам, лежащим вне той сферы, к которой вы принадлежите и за пределами которой ваше суждение не должно цениться выше, чем суждение других людей.

50. Я давно уже подозревал, что эти современные методы анализа не научны, и намекнул на это читающей публике двадцать пять лет тому назад [18]. После этого меня увлекли другие дела, и я считал, что найду себе более полезное занятие, чем выискивать и собирать свои мысли по такому сложному предмету. Правда, недавно меня попросили [19] подтвердить мои высказывания. Однако, поскольку, как мне показалось, лицо, обратившееся с этой просьбой, размышляет не достаточно зрело, чтобы понимать либо ту метафизику, которую оно опровергает, либо математику, которой оно покровительствует, мне не стоило бы причинять себе беспокойство и писать, чтобы его в чем-то убедить. Не надо было бы мне и теперь, после столь долгого

399

перерыва в изучении затронутых мною вопросов, утруждать себя или вас настоящим обращением, если бы я не имел целью помешать вам в той мере, в какой я только в состоянии, обманывать себя и других в вопросах, имеющих гораздо большее значение и важность. и с тем чтобы вы более ясно могли понять силу и направленность изложенных выше замечаний и развить их еще дальше в своих собственных размышлениях, я ставлю в заключение следующие вопросы:

В [опрос] 1. Разве предметом геометрии не являются пропорции определяемых (assignable) протяженностей? и разве есть необходимость в рассмотрении величин бесконечно больших или бесконечно малых?

8.2. Разве целью геометрии не является измерение определяемых конечных протяжений? и разве не эта практическая цель вначале натолкнула людей на изучение геометрии?

8.3. Разве ошибочное определение предмета и цели геометрии не создало уже ненужные трудности и неверные тенденции в названной науке?

8.4. Разве можно по справедливости сказать, что люди действуют в соответствии с научным методом, если они не представляют себе отчетливо ни предмета, о котором они говорят, ни предполагаемой цели, ни метода, с помощью которого она достигается?

8.5. Разве не достаточно того, что каждое определяемое число частей может содержаться в некой определяемой величине? и разве не является ненужным, а также абсурдным допущение, что конечная протяженность бесконечно делима?

8.6. Не будет ли верно, что чертежи в геометрическом доказательстве должны рассматриваться как знаки всех возможных конечных фигур, всех чувственных и воображаемых протяженностей или величин того же рода?

8.7. Разве возможно освободить геометрию от непреодолимых трудностей и нелепостей до тех пор, пока ее истинным предметом считается либо абстрактная общая идея протяженности, либо абсолютная внешняя протяженность?

8.8. Разве понятия абсолютного времени, абсолютного места и абсолютного движения не суть наиболее отвлеченно метафизические? Можем ли мы их измерить, высчитать или познать?

400

8.9. Разве математики не занимаются спорами и парадоксами, относящимися к тому, чего они не понимают и не могут понять? и разве теория сил не является достаточным доказательством этого? *

* См. трактат на латинском [языке] «De motu», опубликованный в Лондоне в 1721 г.

8.10. Разве не было бы достаточно рассматривать в геометрии определяемые конечные величины, не касаясь бесконечности? и разве не было бы более правильным измерять вместо кривых большие по размерам многоугольники с конечными сторонами, а не предполагать, что кривые являются многоугольниками с бесконечно малыми сторонами (предположение и неправильное, и непостижимое)?

Перейти на страницу:

Похожие книги