Эти операторы, являющиеся просто удобным, кратким способом запоминания матричных элементов типа <+|σz|+>, были полезны для описания поведения отдельной частицы со спином 1/2. Возникает вопрос, можно ли отыскать аналогичное средство для описания системы с двумя спинами. Да, и очень просто. Вот смотрите. Мы изобретем вещь, которую назовем «электрон-сигма» и которую будем представлять векторным оператором σe с тремя компонентами σex, σey и σez. Дальше условимся, что когда одна из них действует на какое-то из наших четырех базисных состояний атома водорода, то она действует на один только спин электрона, причем так, как если бы электрон был один, сам по себе. Пример: чему равно σyе|-+>? Поскольку σy, действующее на электрон со спином вниз, дает -i, умноженное на состояние с электроном, у которого спин вверх, то

(Когда σyе действует на комбинированное состояние, оно переворачивает электрон, не затрагивая протон, и умножает результат на -i.) Действуя на другие состояния, σеу даст

Напомним еще раз, что оператор σе действует только на первый спиновый символ, т. е. на спин электрона.

Теперь определим соответствующий оператор «протон-сигма» для спина протона. Три его компоненты σpx, σpy, σpz, действуют так же, как и σе, но только на протонный спин. Например, если σpx будет действовать на каждое из четырех базисных состояний, то получится (опять с помощью табл. 10.1)

Как видите, ничего трудного.

В общем случае могут встретиться вещи и посложнее. Например, произведение операторов σeyσpz. Когда имеется такое произведение, то сначала делается то, что хочет правый оператор, а потом — чего требует левый[39]. Например,

Заметьте, что эти операторы с числами ничего не делают; мы использовали это, когда писали σex(-1)=(-1) σex. Мы говорим, что операторы «коммутируют» с числами или что числа «можно протащить» через оператор. Попрактикуйтесь и покажите, что произведение σехσpz дает для четырех состояний следующий результат:

Если перебрать все допустимые операторы, каждый по разу, то всего может быть 16 возможностей. Да, шестнадцать, если включить еще «единичный оператор» 1. Во-первых, есть тройка σех, σеy, σеz, затем тройка σpx, σpy, σpz, итого шесть. Кроме того, имеется девять произведений вида σехσpy, итого 15. И еще единичный оператор, оставляющий все состояния нетронутыми. Вот и все шестнадцать!

Заметьте теперь, что для системы с четырьмя состояниями матрица Гамильтона должна представлять собой матрицу коэффициентов 4×4, в ней будет 16 чисел. Легко показать, что всякая матрица 4×4, и в частности матрица Гамильтона, может быть записана в виде линейной комбинации шестнадцати двойных спиновых матриц, соответствующих системе операторов, которые мы только что составили. Поэтому для взаимодействия между протоном и электроном, в которое входят только их спины, мы можем ожидать, что оператор Гамильтона может быть записан в виде линейной комбинации тех же 16 операторов. Вопрос только в том, как.

Но, во-первых, мы знаем, что взаимодействие не зависит от нашего выбора осей для системы координат. Если нет внешнего возмущения — чего-то вроде магнитного поля, выделяющего какое-то направление в пространстве, — то гамильтониан не может зависеть от нашего выбора направлений осей х, у и z. Это означает, что в гамильтониане не может быть таких членов, как σex сам по себе. Это выглядело бы нелепо, потому что кто-нибудь в другой системе координат пришел бы к другим результатам.

Единственно возможны только член с единичной матрицей, скажем постоянная а (умноженная на ^1), и некоторая комбинация сигм, которая не зависит от координат, некоторая «инвариантная» комбинация. Единственная скалярная инвариантная комбинация из двух векторов — это их скалярное произведение, имеющее для наших сигм вид

(10.4)

Этот оператор инвариантен по отношению к любому повороту системы координат. Итак, единственная возможность для гамильтониана с подходящей симметрией в пространстве — это постоянная, умноженная на единичную матрицу, плюс постоянная, умноженная на это скалярное произведение, т. е.

(10.5)

Это и есть наш гамильтониан. Это единственное, чему, исходя из симметрии в пространстве, он может равняться, пока нет внешнего поля. Постоянный член нам многого не сообщит; он просто зависит от уровня, который мы выбрали для отсчета энергий. С равным успехом можно было принять Е0=0. А второй член поведает нам обо всем, что нужно для того, чтобы найти расщепление уровней в водороде.

Перейти на страницу:

Поиск

Все книги серии Фейнмановские лекции по физике

Похожие книги