Векторы состояний |n> описывают конфигурацию состояний с определенной энергией, но с вынесенной зависимостью от времени. Это постоянные векторы, которые, если мы захотим, можно использовать в качестве новой базисной совокупности.

Каждое из состояний |n> обладает тем свойством (в чем легко убедиться), что при действии на него оператором Гамильтона Н получится просто Еn, умноженное на то же состояние:

(9.67)

Значит, энергия Еn — это характеристическое число оператора Гамильтона ^Н. Как мы видели, у гамильтониана в общем случае бывает несколько характеристических энергий. Физики обычно называют их «собственными значениями» матрицы Н. Для каждого собственного значения ^Н, иными словами, для каждой энергии, существует состояние с определенной энергией, которое мы называли «стационарным». Состояния |n> обычно именуются «собственными состояниями ^Н». Каждое собственное состояние отвечает определенному собственному значению Еn.

Далее, состояния |n> (их N штук) могут, вообще говоря, тоже быть выбраны в качестве базиса. Для этого все состояния должны быть ортогональны в том смысле, что для любой пары их, скажем |n> и |m>,

(9.68)

Это выполнится автоматически, если все энергии различны. Кроме того, можно умножить все аi(n) на подходящие множители, чтобы все состояния были отнормированы: чтобы для всех n было

(9.69)

Когда оказывается, что (9.63) случайно имеет два (или больше) одинаковых корня с одной и той же энергией, то появляются небольшие усложнения. По-прежнему имеются две различные совокупности аi, отвечающие двум одинаковым энергиям, но состояния, которые они дают, не обязательно ортогональны. Пусть вы проделали нормальную процедуру и нашли два стационарных состояния с равными энергиями. Обозначим их |μ> и |v>. Тогда они не обязательно окажутся ортогональными: если вам не повезло, то обнаружите, что

Но зато всегда верно, что можно изготовить два новых состояния (обозначим их |μ'> и |v'>) с теми же энергиями, но ортогональных друг другу:

(9.70)

Этого можно добиться, составив |μ'> и |v'> из подходящих линейных комбинаций |μ> и |v> с так подобранными коэффициентами, что (9.70) будет выполнено. Это всегда полезно делать, и мы будем вообще предполагать, что это уже проделано, так что можно будет считать наши собственноэнергетические состояния |n> все ортогональными.

Для интереса докажем, что когда два стационарных состояния обладают разными энергиями, то они действительно ортогональны. Для состояния |n> с энергией Еn

(9.71)

Это операторное уравнение на самом деле означает, что имеется соотношение между числами. Если заполнить недостающие части, то оно означает то же самое, что и

(9.72)

Проделав здесь комплексное сопряжение, получим

(9.73)

Теперь вспомним, что комплексно сопряженная амплитуда — это амплитуда обратного процесса, так что (9.73) можно переписать в виде

(9.74)

Поскольку это уравнение справедливо для всякого i, то его можно «сократить» до

(9.75)

Это уравнение называется сопряженным с (9.71).

Теперь легко доказать, что Еn— число вещественное. Умножим (9.71) на <n|. Получится

(9.76)

(с учетом, что =1). Умножим теперь (9.75) справа на |n>:

(9.77)

Сравнивая (9.76) с (9.77), видим, что

(9.78)

а это означает, что En вещественно. Звездочку при Еn в (9.75) можно убрать.

Теперь наконец-то мы в силах доказать, что состояния с различными энергиями ортогональны. Пусть |n> и |m> — пара базисных состояний с определенными энергиями. Написав (9.75) для состояния |m> и умножив его на |n>, получим

Но если (9.71) умножить на

Раз левые части этих уравнений равны, то равны и правые:

(9.79)

Если Еm=Еn, то это равенство ни о чем не говорит. Но если энергии двух состояний |m> и |n> различны (ЕmЕn), то уравнение (9.79) говорит, что <m|n> должно быть нулем, что мы и хотели доказать. Два состояния обязательно ортогональны, если только Еn и Еm отличаются друг от друга.

<p><strong>Глава 10 СВЕРХТОНКОЕ РАСЩЕПЛЕНИЕ В ВОДОРОДЕ</strong></p><p><strong>§ 1. Базисные состояния для системы двух частиц со спином</strong><sup><strong>1</strong></sup><strong>/</strong><sub><strong>2</strong></sub></p>

В этой главе мы займемся «сверхтонким расщеплением» водорода — интересным примером того, что мы уже в состоянии делать с помощью квантовой механики. Здесь у нас уже будут не два состояния, а больше. Поучительность этого примера в том, что он познакомит нас с методами квантовой механики, применяемыми в более сложных задачах. Сам по себе этот пример достаточно сложен, и как только вы поймете, как с ним справляться, вам сразу же станет ясно, как обобщить его на другие возможные задачи.

Перейти на страницу:

Поиск

Все книги серии Фейнмановские лекции по физике

Похожие книги