Здесь нужно указать на замечательный прием Ньютона (Prin. math. phil. nat. lib. II lemma II после propos VII); он изобрел остроумный фокус (Kunststück) для устранения арифметически неправильного пренебрежения произведениями бесконечно малых разностей и высшими их порядками при нахождении дифференциалов. Он находит дифференциал произведения — из которого легко потом вывести дифференциалы частного, степени и т. п. — следующим путем. Произведение х и у, если уменьшить каждый множитель наполовину его бесконечно малой разности, есть ху — xdy/2–ydx/2+dxdy/4, если же увеличить его настолько же, то произведение будет ху+xdy/2+ydx/2+dxdy/4. Если от этого произведения отнять первое, то получится разность ydx+xdy, которая есть приращение на целые dx и dy, так как на эту величину различаются оба произведения; следовательно это дифференциал ху. Как видно, при этом сам собою отпадает член, представлявший главное затруднение, произведение обеих бесконечно малых разностей dxdy. Но несмотря на имя Ньютона, следует сказать, что это, хотя и весьма элементарное, действие неверно.

Неверно, будто (x+dx/2)(у+dy/2) — (х — dx/2)(у — dy/2) = (х+dx)(y+dy) — ху[24]. Лишь потребность, при важности исчисления флюксий, {176}обосновать его могла побудить такого математика, как Ньютон, впасть в заблуждение подобного доказательства.

Другие формулы, с которым прибегает Ньютон для вывода дифференциала, связаны c конкретными относящимися к движению значениями элементов и их степеней. При употреблении формы ряда, которая вообще характерна для его метода, он близок к тому, чтобы сказать, что всегда в его власти путем прибавления дальнейших членов достигнуть потребной степени точности, вообще что результат есть некоторое приближение; он и здесь как бы довольствуется тем же основанием, к которому прибегает его метод решения уравнений высших степеней, при коем путем приближения высшие степени, возникающие через подстановку в данное уравнение каждого найденного еще неточного значения, отбрасываются по грубому основанию их малости; см. Lagrange Equations numériques p. 125.

Ошибка, в которую впал Ньютон в деле разрешения задачи путем пренебрежения существенными для нее высшими степенями, которая дала его противникам повод торжествовать триумф своего метода над его методом, и истинный источник которой обнаружил Лагранж в своих новейших исследованиях (Théorie des fonct. analyt L. P. 3 Ch. 14), доказывает, что формализм и неточность еще господствуют в деле употребления этого орудия. Лагранж показывает, что Ньютон потому впал в ошибку, что он пренебрегал членом ряда, содержащим именно ту степень, которая имела значение для данной задачи. Ньютон держался за формальный, поверхностный принцип пренебрежения членами в виду их относительной малости. Известно, что в механике членам ряда, в котором развивается функция движения, придается определенное значение, так что первый член или первая функция относится к моменту скорости, вторая — к силе ускорения, а третья — к сопротивлению сил. Поэтому члены ряда должны быть рассматриваемы тут не только, как части некоторой суммы, но как качественные моменты целостного понятия. Тем самым пренебрежение прочими членами, принадлежащими ложно бесконечному ряду, имеет смысл, совершенно различный от пренебрежения ими на основании относительной малости[25]. Ньютоново разрешение задачи ошибочно не потому, что в нем не принимаются во внимание члены ряда, лишь как части некоторой суммы, но потому, что не принимается во внимание член, содержащий именно то качественное определение, которое в данном случае важно.{177}

Перейти на страницу:

Все книги серии Наука Логики

Похожие книги