Попробуем рассуждать с позиций современной физики. Противоречит ли выход протона из ядра каким-нибудь запретам? Вопрос важный, и потому остановимся на нем подробнее. Находясь в ядре, протон обладает некоторым запасом энергии. На границе ядра, или, как мы говорили, на перевале, энергия этого протона на 8 МэВ больше. Но затем она опять станет меньше. По ту сторону перевала снова спуск, только более пологий. Значит, вполне возможно, что на большом отдалении от ядра протон обладает той же энергией, которой он обладал, находясь в ядре. Следовательно, самопроизвольный выход протона из ядра закону сохранения энергии не противоречит. Поразмыслив, вы сообразите, что не противоречит он и другим законам сохранения. Раз так, то ничто не мешает протону покинуть ядро. Можно все, кроме того, что нельзя. Иное дело, что такие события происходят с различной вероятностью. Математический аппарат квантовой физики в основном занимается подсчетом таких вероятностей.

Изотопы

Существует несколько элементов и изотопов, объединяемых пвд общим названием «радий». Радий С имеет всего 214 нуклонов, из них 83 протона. Распад радия С может происходить двумя путями. В первом случае ядро радия С расстается с одним электроном (такое тоже возможно — испускание электронов называется бета-распадом) и превращается в другой элемент — радий С', имеющий 214 нуклонов, из которых 84 протона. Испускание электрона ядром всегда сопровождается увеличением на единицу атомного номера и, следовательно, смещением элемента на одну клеточку в таблице Менделеева вправо — это правило смещения.

Во втором случае ядро радия С испускает альфа-частицу и превращается в радий С", имеющий 210 нуклонов, из которых 81 протон. Испускание альфа-частицы сопровождается уменьшением атомного номера на 2 и смешением элемента на две клеточки влево в таблице Менделеева.

Все эти факты служат экспериментальным подтверждением того, что отдельный протон или альфа-частица может покинуть ядро, хотя их энергия ни в какой момент не превышает потенциального барьера. Протон как бы прорывает туннель в потенциальном барьере. Такие явления и называют туннельным эффектом. Туннельный эффект совершенно невозможен с позиций классической, физики, тем не менее наблюдается он довольно часто. Вероятность самопроизвольных распадов атомных ядер измеряют периодом полураспада, т. е. промежутком времени, в течение которого распадается ровно половина от первоначально взятого количества ядер.

Период полураспада радия С равен всего 10~6 с, т. е. одной миллионной доле секунды. Период полураспада радона составляет 3,8 суток. А период полураспада ура-на-238 равен 4,4 • 109 лет. Есть элементы, распадающиеся еще медленнее. Например, период полураспада тория составляет 1,8-1010 лет, рубидия — 4,3-10" лет, самария— 1,2-1012 лет и, наконец, калия — 1,3-1013 лет. Вы, наверное, не знали, что обычный калий — радиоактивный элемент. Не знали потому, что распадается он весьма медленно и заметить его распад можно при наличии очень точных приборов и в результате длительных наблюдений.

Снова лесенка

Почему периоды полураспада так сильно отличаются друг от друга? Дело в том, что нуклоны в ядре, как и электроны в атоме, не могут принимать любые значения энергии. Как для электрона в атоме, для нуклона з ядре имеется лесенка разрешенных уровней. Мы снова сталкиваемся с универсальностью законов квантовой физики. Среди различных уровней, опять-таки как и для электронов в атоме, имеются уровни, соответствующие основным и возбужденным состояниям ядра. Но есть и отличия.

Возбужденный электрон в атоме всегда может перейти в основное состояние, излучив квант энергии. В ядре при определенных конфигурациях возможны лишь возбужденные состояния. Такие ядра называются возбу-

146 жденными. Перейти в основное состояние, т. е. в состояние с меньшей энергией, возбужденное ядро может, расставшись либо с несколькими протонами, либо с электроном. Этот переход и называется радиоактивностью. Чем больше возбуждено ядро, тем с большей вероятностью совершается его распад. Какие ядра самые устойчивые? Те, у которых выдерживается определенное соотношение между количествами протонов и нейтронов.

Легкие ядра — такие, у которых протонов примерно столько, сколько нейтронов, а тяжелые ядра — такие, у которых протонов немного меньше, чем нейтронов.

5 Но особенно важно четное или нечетное число протонов и нейтронов. Самые стабильные ядра те, у которых и число протонов и число нейтронов четное. Их называют четно-четные. Пример — уран: число протонов — 92 (четное), число нейтронов — 146 (тоже четное). Менее стабильны четно-нечетные и нечетно-четные ядра. Наконец, самые нестабильные ядра те, у которых и число протонов и число нейтронов нечетное. Вот и получается, что примерно из девятисот известных на сегодня ядер (как разбухла таблица Менделеева!) только 280 являются стабильными.

Туннели и капли

Перейти на страницу:

Поиск

Похожие книги