Такого нарушения не усматривается, если вспомнить, что энергия подчиняется соотношению неопределенностей. В одной из формулировок соотношения неопределенностей утверждается, что произведение неопределенности величины энергии и неопределенности в величине времени не может быть меньше постоянной Планка. Ор& сюда следует, что если частицы — кванты сильного ваап> имодействия — живут очень недолго, иначе говоря, если произведение времени их жизни и их энергии примерно равно постоянной Планка, то они могут рождаться и исчезать, не нарушая закона сохранения энергии.
Из сказанного можно сделать еще один вывод. Если кванты сильного взаимодействия живут очень недолго, то, даже двигаясь со скоростями, близкими к скорости света, они могут перемещаться только на небольшие расстояния. Это значит, что сильное взаимодействие проявляется лишь на малых расстояниях. Подобный вывод блестяще подтверждается тем, что мы знаем о поведении нуклонов.
Примерно так рассуждал японский ученый Хидеки Юкава. В 1935 году он закончил расчеты, из которых следовало, что гипотетические частицы — кванты сильных взаимодействий — должны обладать массой (напомним, масса эквивалентна энергии), примерно в 200 рае большей массы электрона. Юкава назвал эти частицы мезонами, т. е. средними, имея в виду, что масса мезона находится где-то посередине между массой электрона и массой нуклона. Очень долго гипотеза Юкавы не получала экспериментального подтверждения и, следовательно, оставалась гипотезой. В 1947 году английский физик С. Ф. Пауэлл и его сотрудники обнаружили в космических лучах частицы массой, примерно в 270 раз большей массы электрона. Эти частицы назвали пи-мезонами, или, короче, пионами. Скоро выяснилось, что пионы представляют собой частицы, предсказанные Юкавой.
Согласно современным представлениям, атомное ядро состоит из нуклонов и пионов. Каждый раз, когда нуклон приближается к границе ядра, он испускает пион и меняет направление своего движения. Испущенный пион поглощается каким-либо другим нуклоном. Существует каждый пион в течение столь краткого промежутка времени, что рождение и исчезновение пионов не выводит баланс энергии за рамки, устанавливаемые соотношением неопределенностей.
Все сказанное служит прекрасным примером того, в какой степени понятия «движение» и «направление движения» не соответствуют реально происходящему с нуклоном. Каждый раз, когда мы произносим подобную фразу, мы делаем очередную попытку описать в привычных терминах то, что в этих терминах описано быть не может. Гораздо правильнее было бы сказать, что рождение и поглощение пиона, или обмен пионами, препятствует тому, чтобы нуклоны покидали некоторую облаеть пространства.
Атомная электростанция
Мы достаточно узнали о ядре и приступаем теперь к решению основной задачи этой главы — описанию атомной электростанции. Скажем сразу: изотоп уран-235 не годится в качестве топлива для такой электростанции. Не годится из-за сложности его выделения из смеси, а значит, высокой стоимости.
Если бы удалось построить атомную электростанцию с топливом в виде чистого урана-235, то энергия такой станции стоила бы фантастически дорого. Поступают иначе. В качестве топлива используют природный уран со всеми содержащимися в нем изотопами. А чтобы заставить участвовать в реакции все имеющиеся в топливе атомы урана-235, излучаемые при делении ядер нейтроны искусственно замедляют, пропуская их через какое-либо вещество, например через графит. Попадая в графит, нейтроны не захватываются ядрами углерода и после многократных взаимодействий снижают свою энергию. В результате резко увеличивается вероятность захвата нейтронов ядром урана-235.
Выглядит все это следующим образом. Между урановыми блоками размещают стержни замедлителя нейтронов — графита. Стержни можно поднимать и опускать. Настраиваются они так, чтобы получить требуемую скорость реакции. Если скорость реакции почему-либо увеличивается — стержни автоматически опускаются, скорость реакции уменьшается — стержни поднимаются. Автомат управления стержнями — неотъемлемая составная часть всякого атомного реактора.
Реакция деления ядер урана-235 происходит в основном по такой схеме. Ядро захватывает нейтрон и распадается на два осколка: ядро изотопа ксенона со 139 нуклонами и ядро изотопа стронция с 95 нуклонами. Кроме того, в результате деления образуются два нейтрона, которые после замедления используются для поддержания цепной реакции. Ядро стабильного изотопа ксенона содержит 136 нуклонов, ядро стабильного изотопа стронция — 88 нуклонов. Получающиеся в результате деления осколки обладают большим избытком нейтронов и, следовательно, неустойчивы. Они испытывают несколько последовательных бета-распадов, в результате которых ксенон превращается в стабильный изотоп лантана.