На установках «Токомак» в нашей стране и в США выполнено много успешных наглядных экспериментов. Но к сожалению, до промышленного освоения управляемого термоядерного синтеза еще очень далеко. Плазменный шнур неустойчив, да и нагреть его до температуры 100 млн. градусов (все-таки 100 млн.!) не так-то просто. Ученые, однако, не теряют надежды. А как заманчиво! Освоив термоядерный синтез, мы получим в полном смысле этого слова неисчерпаемые запасы энергии. Важно и то, что продуктом реакции термоядерного синтеза является обычный, не радиоактивный гелий.
Подводя итоги, скажем, что атомная энергия очень напоминает химическую. И та и другая выделяются в результате реакций. И в том и в другом случае количество выделяемой энергии равно разности между энергетическими уровнями исходных веществ и продуктов реакций. Наконец, и в том и в другом случае выделение энергии происходит в достаточной мере беспорядочно.
ГЛАВА 6
Энергия высшего качества
Солнечный зайчик
Приятно проснуться тихим солнечным утром от того, что по щеке скользнул солнечный зайчик. Тот самый солнечный зайчик, который, как говорится в одной песенке, не линяет даже весной, когда линяют всякие звери. Крохотным осколком зеркала можно запустить солнечный зайчик, например, в окно к приятелю. Солнечные зайчики — один из самых древних способов передачи информации. Но вот беда! Солнечный зайчик, а в общем случае строго параллельный пучок световых лучей любого происхождения, получить легко лишь в том случае, если расстояние невелико. На больших расстояниях пучок обязательно расходится и световой луч имеет форму конуса.
Чтобы получить малорасходящийся световой пучок, пользуются зеркалами различной формы. Зеркальная поверхность, представляющая собой параболоид вращения, собирает световые лучи, исходящие от точечного источника, помещенного в фокус параболоида, в строго параллельный пучок. На этом принципе строятся отражатели мощных прожекторов и карманных фонариков. И снова беда в том, что, во-первых, не существует точечных источников света, а во-вторых, не существует зеркал с идеальной поверхностью. Поэтому даже луч прожектора всегда расходится.
Откуда вообще берутся световые лучи? Чем объясняются законы их преломления и отражения? Причиной появления света всегда являются электроны, входящие в состав атомов и молекул. Вы знаете, что ядра и электроны в атомах связываются между собой электромагнитными полями, образуя сложную систему. Система эта обладает запасом энергии, складывающимся в основном (если не считать внутриядерной энергии) из энергий отдельных электронов. Энергия электрона в основном сосредоточена в его электромагнитном поле. Поля отдельных электронов складываются, значит, складываются и их энергии. Поэтому правильнее говорить, что энергией обладает весь атом, точнее, его электромагнитное поле, хотя при различных расчетах иногда удобнее учитывать вклад каждого электрона по отдельности.
В чем состоит главное свойство атома? Его энергия квантуется. Она не может быть любой, а всякий раз принимает одно из некоторых значений — уровней. Значение энергии определяет состояние атома. Все это справедливо и для молекул, но молекулы — системы более сложные, они могут принимать больше различных состояний, а правила, по которым определяют, какие состояния возможны, а какие нет, гораздо мудренее.
Большую часть времени атом проводит на основном уровне. Существуют возбужденные уровни, на которых энергия электрона больше, чем на основном. Переход атома из основного состояния в возбужденное происходит под воздействием какой-либо внешней причины. Напротив, из возбужденного состояния в основное атом может перейти сам по себе. При переходе с одного из возбужденных уровней на основной или вообще с высшего на низший уровень энергия атома уменьшается. Но конечно, она не исчезает бесследно. Энергия либо передается соседним атомам, либо выделяется в форме кванта электромагнитных колебаний. Энергия этого кванта равна разности энергий атома до и после перехода. Такую порцию электромагнитных колебаний называют фотоном. Частота колебаний фотона пропорциональна энергии. Это еще один из фундаментальных законов нашего мира. Значит, надо атом сначала перевести на возбужденный уровень, а затем он уже сам перейдет на основной с излучением кванта электромагнитных колебаний.
Как перевести атом в состояние с большей энергией (на более высокий уровень)? Есть много разных способов. Можно сообщить атомам тепловую энергию, как в керосиновой или электрической лампах, можно воздействовать на них электронами (экран телевизора), световыми квантами (светящиеся краски). Атомам можно передать энергию, выделяющуюся при протекании химической реакции (светлячок) и многими другими способами. Выждав некоторое время, атом сам по себе (спонтанно) возвращается на один из более низких уровней и излучает фотон. Такой фотон необязательно является фотоном видимого света, но это уже детали. Важно, что энергия фотона всегда равна разности энергии атома до и после перехода.