- Меньше, покуда речь идет о числах, о конечных величинах. А раз ты имеешь дело с бесконечностью, то, как ты сейчас сам видишь, это не так. Там вовсе не обязательно, чтобы часть была меньше своего целого. В данном случае часть совершенно такая же, как и ее целое. И это странное целое можно еще по-разному разбить на части, и опять получится то же самое. Великий Галилео Галилей в книге, которая называется "Беседа о двух новых науках" и которая вышла б свет в тысяча шестьсот тридцать восьмом году, задает примерно такой вопрос: "Верно ли будет, если я скажу, что количество правильных квадратов, как "четыре", "девять", "шестнадцать", "двадцать пять" и так далее, меньше количества всех чисел, поскольку число правильных квадратов непрерывно и очень скоро убывает по мере того, как мы двигаемся вперед по натуральному ряду чисел по направлению ко все большим и большим числам? Для примера укажу, что в первой сотне я насчитываю десять квадратов, что составляет одну десятую всех чисел до сотни включительно; затем до десяти тысяч их будет сто, то есть одна сотая, а до миллиона их будет одна тысячная и так далее". Поскольку это так, то несомненно правильно, что в любом конечном числе квадратов будет гораздо меньше, чем всех чисел, и чем оно будет больше, тем относительно их будет меньше. Однако, как только мы переходим к бесконечности, оказывается, что я могу все это рассмотреть совершенно с другой точки зрения. Напишем вот таких два ряда:

1 2 3 4 5 6 7 8 9 10 11 12...

1 4 9 16 25 36 49 64 81 100 121 144...

Под каждым числом натурального ряда я подписываю во втором ряду его квадрат, и оба ряда будут тянуться вровень без конца. "Поэтому, - говорит далее Галилей, - нельзя сказать, которых чисел больше, которых меньше. Можно только сказать, что их бесконечное множество - и тех и других". Свойства конечных чисел, таким образом, на бесконечные множества распространять невозможно.

- 209 -

Из этого луча можно сделать два луча.

- Все это так, - медленно произнес Илюша, - а понять все-таки очень трудно.

- Ничего удивительного здесь нет, - отвечал Радикс, - что тебе вся эта задача кажется такой трудной.

Современные ученые полагают, что она была настолько трудна для современников Галилея, что не столько привлекла их внимание к этим тонким вопросам, сколько отпугнула их своей необычностью и необъяснимостью. Но не торопись, кое-что можно будет тебе разъяснить в дальнейшем.

- Хорошо бы... - отвечал наш герой.

- Трудность здесь заключается в том, что мы не можем пересчитать числа в том и другом ряду. Так как это невозможно, то нам остается только подумать, нельзя ли найти какой-нибудь способ сравнивать друг с другом бесконечные множества.

И вот что тут можно предложить.

Представь себе, что ты пришел в школу на вечер. Собралась масса мальчиков и девочек. Зал большой, страшная толкотня, а тебе хочется узнать, кого больше: мальчиков или девочек? Сколько тех и других, тебя не интересует. Ты хочешь только выяснить, кого больше. Как это сделать? Самое простое - попросить оркестрантов, чтобы они заиграли вальс. Тотчас же все станут парами, и тут ты увидишь, кого больше. Теперь ты видишь, что я и применяю этот самый способ к бесконечным множествам, например ко множеству всех чисел и множеству квадратов: сопоставляю их попарно, а раз это удается, значит, что никакой разницы между множеством всех чисел и множеством квадратов в отношении количества их элементов нет.

- 210 -

Но только математики говорят в таких случаях не "количество" элементов, а так: эти два множества имеют "одинаковую мощность"[16].

- А теперь уже мне кажется, что всякие два бесконечных множества будут иметь одинаковую мощность! - сказал Илюша. - Если я, например, начну располагать в ряд элементы одного из них, а ты в это время будешь делать то же самое с другим, то выйдет, что мое и твое множества одинаковой мощности, как если я буду перебирать подряд все числа, а ты одновременно со мной только все четные.

- Нет, - ответил Радикс, - не все бесконечные множества можно так исчерпать. Например, если взять множество всех точек на отрезке прямой, то его таким способом исчерпать нельзя. У нас говорят, что оно имеет "более высокую мощность", чем множество, например, всех натуральных чисел.

- По поводу точек на отрезке я вспоминаю, - сказал Илюша, - что ты мне говорил, будто из одного луча можно сделать два.

- Даже не два, а бесконечное множество. И это очень просто. Представь себе, что на твоем луче отложен отрезок, равный единице, потом еще один, и так до бесконечности. Перенумеруй по порядку эти отрезки, а затем, как хозяин Мишкиной гостиницы, из четных, сдвинув их вместе, сооруди один луч, а из оставшихся нечетных - другой. Потом можешь повторить это с каждым из них, и так столько раз, сколько тебе угодно. А если догадаешься, можешь и сразу начать так перераспределять эти единичные отрезки, чтобы получилось бесконечное число лучей.

- Но если конечный отрезок разделить пополам, в каждой части будет вдвое меньше точек, чем в целом отрезке?

Перейти на страницу:

Похожие книги