— Да это не книга, это статья в газете. Про то, что Лобачевский на самом деле был агент германской разведки… ну это к делу не относится. Все равно он наверняка так говорил. Он же тоже математик, значит они с Пифагором заодно.
— Пифагор ничего не говорил про штаны.
— Ну да! О том и речь. Фигня это все.
— Давай по порядку. Откуда ты лично знаешь, о чем говорится в теореме Пифагора?
— Ой, ну брось! Это же все знают. Любого спроси, тебе сразу ответят.
— Пифагоровы штаны — это не штаны…
— А, ну конечно! Это аллегория! Знаешь, сколько раз я уже такое слышал?
— Теорема Пифагора гласит, что сумма квадратов катетов равна квадрату гипотенузы. И ВСЕ!
— А где штаны?
— Да не было у Пифагора никаких штанов!!!
— Ну вот видишь, я тебе о том и толкую. Фигня вся ваша математика.
— А вот и не фигня! Смотри сам. Вот треугольник. Вот гипотенуза. Вот катеты…
— А почему вдруг именно это катеты, а это гипотенуза? Может, наоборот?
— Нет. Катетами называются две стороны, образующие прямой угол.
— Ну вот тебе еще один прямой угол.
— Он не прямой.
— А какой же он, кривой?
— Нет, он острый.
— Так и этот тоже острый.
— Он не острый, он прямой.
— Знаешь, не морочь мне голову! Ты просто называешь вещи как тебе удобно, лишь бы подогнать результат под желаемое.
— Две короткие стороны прямоугольного треугольника — это катеты. Длинная сторона — гипотенуза.
— А, кто короче — тот катет? И гипотенуза, значит, уже не катит? Ты сам-то послушай себя со стороны, какой ты бред несешь. На дворе 21 век, расцвет демократии, а у тебя средневековье какое-то. Стороны у него, видишь ли, не равны…
— Прямоугольного треугольника с равными сторонами не существует…
— А ты уверен? Давай я тебе нарисую. Вот, смотри. Прямоугольный? Прямоугольный. И все стороны равны!
— Ты нарисовал квадрат.
— Ну и что?
— Квадрат не треугольник.
— А, ну конечно! Как только он нас не устраивает, сразу «не треугольник»! Не морочь мне голову. Считай сам: один угол, два угла, три угла.
— Четыре.
— Ну и что?
— Это квадрат.
— А квадрат что, не треугольник? Он хуже, да? Только потому, что я его нарисовал? Три угла есть? Есть, и даже вот один запасной. Ну и нефиг тут, понимаешь…
— Ладно, оставим эту тему.
— Ага, уже сдаешься? Нечего возразить? Ты признаешь, что математика — фигня?
— Нет, не признаю.
— Ну вот, опять снова-здорово! Я же тебе только что все подробно доказал! Если в основе всей вашей геометрии лежит учение Пифагора, а оно, извиняюсь, полная чушь… то о чем вообще можно дальше рассуждать?
— Учение Пифагора не чушь…
— Ну как же! А то я не слышал про школу пифагорейцев! Они, если хочешь знать, предавались оргиям!
— При чем тут…
— А Пифагор вообще был педик! Он сам сказал, что Платон ему друг.
— Пифагор?!
— А ты не знал? Да они вообще все педики были. И на голову трехнутые. Один в бочке спал, другой голышом по городу бегал…
— В бочке спал Диоген, но он был философ, а не математик…
— А, ну конечно! Если кто-то в бочку полез, то уже и не математик! Зачем нам лишний позор? Знаем, знаем, проходили. А вот ты объясни мне, почему всякие педики, которые жили три тыщи лет назад и бегали без штанов, должны быть для меня авторитетом? С какой стати я должен принимать их точку зрения?
— Ладно, оставь…
— Да нет, ты послушай! Я тебя, в конце концов, тоже слушал. Вот эти ваши вычисления, подсчеты… Считать вы все умеете! А спроси у вас что-нибудь по существу, тут же сразу: «Это частное, это переменная, а это два неизвестных». А ты мне в о-о-о-общем скажи, без частностей! И без всяких там неизвестных, непознанных, экзистенциальных… Меня от этого тошнит, понимаешь?
— Понимаю.
— Ну вот объясни мне, почему дважды два всегда четыре? Кто это придумал? И почему я обязан принимать это как данность и не имею права сомневаться?
— Да сомневайся сколько хочешь…
— Нет, ты мне объясни! Только без этих ваших штучек, а нормально, по-человечески, чтобы понятно было.
— Дважды два равно четырем, потому что два раза по два будет четыре.
— Масло масляное. Что ты мне нового сказал?
— Дважды два — это два, умноженное на два. Возьми два и два и сложи их…
— Так сложить или умножить?
— Это одно и то же…
— Оба-на! Выходит, если я сложу и умножу семь и восемь, тоже получится одно и то же?
— Нет.
— А почему?
— Потому что семь плюс восемь не равняется…
— А если я девять умножу на два, получится четыре?
— Нет.
— А почему? Два умножал — получилось, а с девяткой вдруг облом?
— Да. Дважды девять — восемнадцать.
— А дважды семь?
— Четырнадцать.
— А дважды пять?
— Десять.
— То есть четыре получается только в одном частном случае?
— Именно так.
— А теперь подумай сам. Ты говоришь, что существуют некие жесткие законы и правила умножения. О каких законах тут вообще может идти речь, если в каждом конкретном случае получается другой результат?!
— Это не совсем так. Иногда результат может совпадать. Например, дважды шесть равняется двенадцати. И четырежды три — тоже…