Осуществляя свою программу поиска универсальных законов, Ньютон получил немало важных результатов в алгебре и геометрии. Особенно велик его вклад в создание дифференциального и интегрального исчислений. Математический анализ, ядро которого составляет дифференциальное и интегральное исчисление – самая тонкая область всей математики, – был построен на совсем не существующих логических основаниях арифметики и алгебры и на не вполне ясных основах евклидовой геометрии. В основе математического анализа лежит понятие функции. Не стремясь к особой строгости, функцию можно описать как зависимость между переменными. Но в XVII в. понятие иррационального числа еще не получило должного истолкования. Следовательно, едва зародившейся теории функций явно не доставало логических обоснований. Однако, поскольку в середине XVII в. математики привыкли свободно обращаться с иррациональными числами, на отсутствие таких обоснований никто не обращал внимания.
Две проблемы привлекли к себе внимание величайших математиков XVII в., наиболее известными среди которых были Кеплер, Декарт, Бонавентура Кавальери, Ферма, Блез Паскаль, Джеймс Грегори, Жиль Персон, Христиан Гюйнгенс, Исаак Барроу, Джон Валлис и, конечно же, Ньютон и Лейбниц. Каждый из этих ученых по-своему подошел к проблемам определения и вычисления производной и определенного интеграла. Одни из творцов дифференциального и интегрального исчисления рассуждали исключительно геометрически, другие – алгебраически, третьи использовали смешанный алгебро-геометрический подход. И для каждого из этих математиков было ясно одно: математические законы естествознания представляют собой истины, органически включенные Господом Богом в созданный им план Вселенной.
Из ранних попыток вычисления площадей и объемов с помощью определенного интеграла работа Бонавентуры Кавальери заслуживает внимания по двум причинам: во-первых, она оказала большое влияние на современников и на математиков последующих поколений и, во-вторых, довольно точно отражала типичные особенности характерного для того времени математического мышления, которое сегодня можно было бы назвать довольно смутным. Так, один из современных историков науки заявил, что если бы существовал особый приз за неясность, то работа Кавальери была бы тут вне всякой конкуренции и, безусловно, заслужила бы такую награду. Кавальери считал, что площадь фигуры, изображенная на рисунке, состоит из бесконечно большого числа элементов.
Эти элементы он называл неделимыми. Вполне возможно, что неделимыми могли быть отрезки прямых. У самого Кавальери не было ясности относительно того, что именно представляют собой его неделимые. Он лишь утверждал, что если площадь фигуры разбивать на все меньшие и меньшие прямоугольники, то в конечном итоге получатся неделимые.
В одной из своих книг «Шесть геометрических упражнений» Кавальери «объяснил», что рассматриваемая фигура состоит из неделимых, как, например, ожерелье – из бусин, ткань – из нитей и книга – из страниц. Руководствуясь столь неясными понятиями, Кавальери, тем не менее, научился сравнивать две площади или два объема и получать правильные соотношения между двумя сравниваемыми величинами. Не имея возможности объяснить, как из бесконечного числа элементов (неделимых) можно составить фигуру конечной протяженности, Кавальери пытался уйти от ответа на вопрос, отказываясь дать сколько-нибудь точную интерпретацию неделимых. Иногда он в довольно туманных выражениях говорил о бесконечной сумме линий, не объясняя явно природу бесконечности. В других случаях Кавальери называл свой метод не более чем прагматическим приемом, позволяющим заменить сложный метод исчерпывания, применявшийся древними греками. По свидетельству Кеплера, приведенному в его сочинении «Новая стереометрия винных бочек», Кавальери ссылался на современных ему геометров, обращавшихся с понятиями еще более свободно, чем он сам.
В защиту Кавальери выступил Паскаль. В своих «Письмах из Деттонвиля» (1658) он утверждал, что геометрия неделимых превосходно согласуется с евклидовой геометрией: «То, что может быть доказано с помощью истинных правил неделимых, может быть также доказано со всей строгостью на манер древних». По мнению Паскаля, геометрия неделимых Кавальери и геометрия древних греков отличаются только терминологией. Метод неделимых, считал Паскаль, должен быть принят каждым математиком, претендующим на то, чтобы считаться геометром. Но у Паскаля не было определенного мнения относительно математической строгости. Иногда он утверждал, что, подобно тому, как религия ставит милосердие превыше разума, так и для получения правильных результатов необходима истинная «утонченность», а не логика, присущая геометрии. Парадоксы геометрии, проявившиеся в математическом анализе, Паскаль сравнивал с кажущимися нелепостями христианства и считал, что неделимые значат в геометрии не более чем суд мирской в сравнении с судом Божьим.