Можно сказать, что к использованию ТРИЗа в качестве инструмента прогнозирования техники есть существенные препятствия:

конечная цель рассуждений «тризовцев» задана как утилитарное решение возникшей технической проблемы. Эта утилитарность, направленность на разрешение единственного противоречия, затрудняет прогнозирование следующего поколения технических изделий, в котором будут использованы новые противоречия;

комплексы противоречий, характерные для целых индустрий, для промышленности практически не исследуются;

таблица физических противоречий, которой пользуются при решении задач, никогда не может быть завершена в силу неисчерпаемости мира. Поэтому невозможно сказать, когда ее необходимо будет дополнить9.

Следовательно, для создания качественных прогнозов надо отойти от узкоутилитарного тризовского метода и рассматривать комплексы противоречий: а) более системно; б) оценивать не последствия единичного изобретения, а динамику развития указанных комплексов. Основное (несущее) противоречие в любой системе выделять необходимо, но нельзя отождествлять его с тризовским «техническим противоречием»[7]. И прогноз развития техники формулировать уже на основании изменения или же консервации таких противоречий.

Однако в прогнозировании качественно новых ступеней развития техники есть фундаментальная методологическая проблема, и попытки ее решения не прекращаются последние десятилетия. Так у Г. П. Щедровицкого в книге «Программирование научных исследований и разработок» выделяются два типа систем: нормативные, парадигмальные, которые целенаправленно развивают сложившуюся практику, и синтагматические, ситуационные, которые являются «главными и ведущими в плане совершенствования и развития» [270, с. 143]. Но прогнозирование, основанное на исследовании организационных структур научных разработок, очень зависит от конъюнктуры. Сейчас громадные средства вкладываются в повышение КПД ветро- и гелиогенерации. Но если через десять лет будет сделан прорыв в создании термоядерного реактора, то львиная доля «солнечных батарей» станет не нужна.

Налицо противоречие. Прогнозировать новые качества технологий и технических изделий необходимо. Есть примеры удачных и при том обоснованных прогнозов. Но обобщенного метода прогнозирования нет и быть не может. Потому необходим поиск новых инструментов, образов, категорий и схем, которые бы могли отразить еще не созданное качество техники.

. Отдельную методологическую сложность составляют прогнозы, основанные на математических моделях.

Еще полстолетия назад математическое моделирование сталкивалось с проблемами недостаточной мощности компьютеров и ограниченного доступа к базам данных. Эти проблемы по факту решены.

Сегодня самая очевидная сложность – можно очень легко составлять и просчитывать бесконечное количество моделей. Современный футуролог имеет дело с неограниченным множеством схожих «вариантов», которые при изменении буквально нескольких коэффициентов могут давать различные результаты. На любое состояние окружающей действительности может быть составлено запрашиваемое количество моделей, которые дадут веер прогнозов. Апостериорная проверка этими моделями будет выдерживаться: если в их рамках «переиграть» недавние ситуации, то получится результат, очень похожий на реальность. Но постоянно появляются новые данные, часть предыдущих моделей не подтверждается при том, что оставшиеся так же выдерживают апостериорную проверку. И понять, какие из проверенных моделей адекватны, а какие при получении еще одного статистического обзора выдадут полную чепуху, сложно.

Следовательно, простая опора на «неограниченные вычислительные мощности» ведет к релятивизму моделирования и, фактически, к вариации юмовского скептицизма. Модель, исправно предсказавшая тысячу колебаний биржевого курса, может обмануть на тысяче первом расчете. Математические зависимости сами по себе, без привязки к онтологии, без практической проверки, могут обеспечить предсказание заведомо фантастического, нелепого результата.

Перейти на страницу:

Похожие книги