Изменение размера буфера тоже не дешево. Копирование каждого элемента буфера требует много работы, и этого лучше всего избегать. Чтобы защититься от этого, явно укажите размер буфера. Имеется пара способов сделать это. Простейшим способом сделать это является указание размера при создании вектора.

vector vec(1000);

Здесь резервируется место для 1000 строк, и при этом производится инициализация каждого слота буфера с помощью конструктора string по умолчанию. При этом подходе приходится платить за создание каждой из этих строк, но добавляются определенные меры безопасности в виде инициализации каждого элемента буфера пустой строкой. Это означает, что при ссылке на элемент, значение которого еще не было присвоено, будет просто получена пустая строка.

Если требуется проинициализировать буфер каким-то определенным значением, можно передать объект, который требуется скопировать в каждый слот буфера.

string defString = "uninitialized";

vector vec(100, defString);

string s = vec[50]; // s = "uninitialized"

В этом варианте vec с помощью конструктора копирования создаст 100 элементов, содержащих значение из defString.

Другим способом резервирования пространства буфера является вызов метода reserve, расположенный после создания vector.

vector vec;

vec reserve(1000);

Главным различием между вызовом reserve и указанием размера в конструкторе является то, что reserve не инициализирует слоты буфера каким-либо значением. В частности, это означает, что не следует ссылаться на индексы, в которые еще ничего не записано.

vector vec(100);

string s = vec[50]; // без проблем: s содержит пустую строку

vector vec2;

vec2.reserve(100);

s = vec2[50];      // Не определено

Использование резервирования или указание числа объектов по умолчанию в конструкторе помогает избежать ненужных перераспределений буфера, Это приводит к увеличению производительности, но также позволяет избежать и еще одной проблемы: каждый раз, когда происходит перераспределение буфера, все итераторы, имевшиеся на этот момент и указывающие на элементы, становятся недействительными.

Наконец, плохой идеей является вставка элементов в любое место, кроме конца вектора. Посмотрите на рис. 6.1. Так как vector — это просто массив с дополнительными прибамбасами, становится очевидно, почему следует добавлять элементы только в конец вектора. Объекты в vector хранятся последовательно, так что при вставке элемента в любое место, кроме конца, скажем, по индексу n, объекты с n+1 до конца должны быть сдвинуты на один (в сторону конца) и освободить место для нового элемента. Сложность этой операции линейна, что означает, что она оказывается дорогостоящей даже для векторов скромного размера. Удаление элемента вектора имеет такой же эффект: оно означает, что все индексы больше n должны быть сдвинуты на один слот вверх. Если требуется возможность вставки и удаления в произвольном месте контейнера, вместо вектора следует использовать list.

<p>6.3. Копирование вектора</p>Проблема

Требуется скопировать содержимое одного vector в другой.

Решение

Имеется пара способов сделать это. Можно при создании vector использовать конструктор копирования, а можно использовать метод assign. Пример 6.3 показывает оба этих способа.

Пример 6.3. Копирование содержимого vector

#include

#include

#include

#include

using namespace std;

// Вспомогательная функция для печати содержимого вектора

template

void vecPrint (const vector& vec) {

 cout << "{";

 for (typename vector::const_iterator p = vec.begin();

  p != vec.end(); ++p) {

  cout << "{" << *p << "} ";

 }

 cout << "}" << endl;

}

int main() {

 vector vec(5);

 string foo[] = {"My", "way", "or", "the", "highway"};

 vec[0] = "Today";

 vec[1] = "is";

 vec[2] = "a";

 vec[3] = "new";

 vec[4] = "day";

 vector vec2(vec);

 vecPrint(vec2);

 vec.at(0) = "Tomorrow";

 vec2.assign(vec.begin(), vec.end()); // Копирование каждого элемента

 vecPrint(vec2);                      // с помощью присвоения

 vec2.assign(&foo[0], &foo[5]); // Присвоение работает для всего, что

Перейти на страницу:

Похожие книги