Итак, ясно, что в архимедовом мире, который раскрывается в «Беседах и математических доказательствах», горизонтальная плоскость, на которой бесконечно длится равномерное движение, более не представляет собой сферическую поверхность – здесь это бесконечная геометрическая плоскость; и степень скорости, приобретенной телом, в нем вечно сохраняется, каким бы ни было направление его движения, а это означает, что всякая тяжесть или – что одно и то же – всякое тело, однажды приведенное в движение на горизонтальной плоскости, бесконечно движется прямолинейно и равномерно… Как уже было сказано, мы стоим в самом преддверии принципа инерции. Но мы не перейдем этот порог. Ибо Галилей тут же прибавляет, что данное тело будет двигаться естественным образом вниз, что, падая, оно будет естественным образом ускоряться, а поднимаясь, станет замедляться… Кроме того, его прямолинейное движение продолжает или, если угодно, сохраняет свою прямолинейность лишь постольку,
Когда тело движется по горизонтальной плоскости, не встречая никакого сопротивления движению, то, как мы уже знаем из всего того, что было изложено выше, движение его было бы равномерным и продолжалось бы постоянно, если бы плоскость простиралась в пространстве без конца. Если же плоскость конечна и расположена высоко, то тело,
и это движение – как показывает Галилей в доказательстве, ставшем классическим, – описывает половину параболы.
Совершенно ясно, что когда плоскость обрывается и более не подпирает тело, то оно падает. Его движение продолжается по прямой только лишь постольку, поскольку тело продолжает оставаться на горизонтальной плоскости; плоскости больше нет – это движение продолжается само по себе, однако тело более не движется по прямой.