Роль математики в физике – проблема не новая, совсем наоборот: в течение двух тысяч лет она составляла предмет философских размышлений и дискуссий. И Галилей отнюдь не обходит ее стороной. Во времена своих юных, студенческих лет, когда он посещал курс по философии, который читал Франческо Бонамико, он смог узнать, что вопрос о роли и природе математики составляет важнейший предмет споров между Аристотелем и Платоном695.

Несколько лет спустя, по возвращении в Пизу – на этот раз уже в роли преподавателя, – Галилей благодаря своему товарищу и коллеге Джакопо Маццони, автору труда, посвященного взаимоотношениям Платона и Аристотеля, нашел подтверждение тому,

что нет <…> иного вопроса, т. е. разночтения, которое бы давало место для стольких размышлений благородных и прекрасных <…> как этот вопрос: является ли использование математики в естествознании в качестве инструмента доказательства и среднего термина доказательства, уместным или же неуместным; иными словами, дает ли нам это некоторую истину или же, наоборот, это вредно и опасно. Действительно, Платон верил, что математика совершенно пригодна для размышлений о физике. И по этой причине он не раз прибегал к ней для разъяснения физических загадок. Однако Аристотель, кажется, придерживался совершенно противоположного мнения и списывал заблуждения Платона на его любовь к математике696.

Совершенно ясно, что для философского и научного мышления того времени (Бонамико и Маццони, в сущности, лишь выражают общее мнение697) граница между последователями Аристотеля и Платона проступает очень отчетливо: тот, кто считает, что математика обладает высшей ценностью, кто, кроме того, приписывает математическим сущностям действительное значение и главенствующее положение в и для физики, – тот платоник; тот, кто, напротив, считает математику «абстрактной» наукой и, как следствие, приписывает ей меньшее значение, чем наукам – метафизике и физике, – которые занимаются реальностью, кто, в частности, пытается основывать физику непосредственно на опыте, отводя математике лишь вспомогательную роль, – тот последователь Аристотеля.

Отметим между прочим, что речь здесь вовсе не идет о проблеме достоверности, скорее о проблеме реальности: ни один последователь Аристотеля никогда не ставил под сомнение достоверность геометрических доказательств. Вопрос также не в том, применима ли математика в естествознании: ни один последователь Аристотеля никогда не отказывался измерять то, что измеримо, и считать то, что исчисляемо, – вопрос в том, какова ее роль в и для самой структуры научного знания, т. е. этот вопрос необходимым образом касается самой реальности.

В то же время следует признать, что эпистемологические и исторические представления современников Галилея, как нам кажется, не лишены смысла. По правде сказать, мы вполне согласны с ними: математизм в физике действительно является признаком платонизма, даже если это неосознанно; потому наступление эпохи классической науки в общем можно назвать возвращением к Платону.

На эти споры, которые мы только что упомянули, Галилей ссылается с самого начала «Диалога». С самого начала Симпличио указывает на то, что

…в вопросах, касающихся природы, не всегда следует искать математические доказательства698.

На что Сагредо, который, похоже, прекрасно понимает, о чем идет речь, отвечает:

Пожалуй, в тех случаях, когда этого нельзя достигнуть; но если доказательство имеется699, почему вы не хотите им воспользоваться?

Пожалуй: если, говоря о природных явлениях, возможно найти доказательство, содержащее математическую необходимость, будет неправильно этим не воспользоваться. Но возможно ли это? Весь вопрос коренится именно в этом, и Галилей, которому прекрасно известно, какова на самом деле аристотелевская позиция на этот счет, на полях резюмирует эту ситуацию совершенно иначе:

В доказательствах естественных не следует искать точности геометрической700.

Перейти на страницу:

Поиск

Все книги серии История науки

Похожие книги