Этот вопрос может быть разрешен еще иным, более трудным способом. Представим себе камень, пребывающий в точке А, притом что пространство между А и В пусто. Пусть сегодня в 9 часов утра впервые, к примеру, в точке В Бог сотворил силу притяжения, действующую на камень; и в последующий момент он и далее постоянно создавал новые силы притяжения, равные той, что он сотворил в самый первый момент. Эти новые силы, прибавляясь к тем, что были сотворены раньше, притягивают камень все сильнее, тем более что в пустоте предмет, приведенный в движение однажды, движется вечно. Допустим, что камень, который находился в точке А, достигает точки В в 10 часов. Если мы спросим, за какое время он пройдет первую половину пути (т. е. отрезок AG) и за какое время он пройдет оставшуюся половину, я отвечу, что камень падает вдоль линии267 AG в течение ⅛ часа, а вдоль линии GB – в течение ⅞ часа. Таким образом, действительно, следует начертить пирамиду с треугольным основанием, высота которой была бы равна AB и которая вместе со всей пирамидой была бы произвольным образом разделена горизонтальными секущими линиями. Камень будет пересекать получившиеся на линии АВ отрезки тем быстрее, чем больше тот сегмент пирамиды, которому принадлежит отрезок268.
Декарт прав, считая этот способ рассмотрения проблемы «более сложным». По сути, в данном случае он принимает принцип сохранения движения Бекмана. Но к этому принципу он добавляет постоянное возрастание силы притяжения (как видно, для этого он обращается к божественному вмешательству). Удивительное дело! Во всех возможных случаях, изученных Декартом, есть один-единственный, который он не рассматривает, а именно – тот, который ему предложил Бекман.
Как же вышло, что Бекман не заметил ошибки, допущенной Декартом, и не приписал целиком себе одному всю заслугу в отыскании правильного решения? Вероятно, мы никогда не сможем этого объяснить. Но мы должны признать тот факт, что Бекман, стремясь разрешить
Не указывает ли это на то, что для Бекмана проблема была скорее математической и что именно в таком решении, которое включает в себя использование интегрального исчисления, он и видит заслугу своего юного товарища?
Казалось бы, можно было бы пойти еще дальше. Если Бекман не видит разницы между своим решением (скорость пропорциональна времени движения) и решением Декарта (скорость пропорциональна пройденному расстоянию), так это потому, что для него не существует разницы – эти два решения кажутся ему одинаковыми271.