Книга IX, предложение 36. Если от единицы откладывается сколько угодно последовательно пропорциональных чисел в двойном отношении до тех пор, пока вся их сумма не станет первым числом, [...] то возникающее число будет совершенным.
Евклид имеет в виду следующее:
Если 1,2, 22, 23, ..., 2n последовательно удваивать, то их сумма будет
Sn=1 + 2 + 22 + 23+...+ 2n = 2n+1 -1; если Sn — простое число, то Рn = 2n x Sn = 2nx(2n+1-1) — совершенное число (четное).
Евклиду удалось получить этот результат, потому что в предложении 35 книги IX он уже дал формулу, необходимую для сложения чисел из последовательности 1, 2, 22, 23, ..., 2n. Он также обратил внимание, что единственные рассмотренные делители Р, 1, 2, 22, 23,..., 2n и Sn, 2 х Sn, 22 х Sn, 23 x Sn,..., 2n-1 x Sn. Он сложил их и получил результат теоремы: сумму делителей 1, 2, 22, 23, ..., 2n,
равную Sn = 2n + 1 - 1, и сумму делителей Sn, 2 x S ,22 x S ,23 x S ,..., 2n-1 x S и (2n - 1) x S . Сумма двух результатов — Рn = Sn + (2n- 1) х Sn = 2n х Sn = 2n х (2n + 1 - 1). Ч. Т. Д.
Первые примерыВ «Арифметике» Никомах Герасский устанавливает, что совершенными числами являются 6,28,496 и 8126. Из этого он делает следующие выводы.
1. Совершенные числа (четные) оканчиваются на 6 и 8 (верно).
2.Они чередуются (неверно).
3.Существует одно совершенное число на каждый десятичный порядок — среди единиц, десятков, сотен, тысяч и так далее (неверно).
В XVIII веке Эйлер доказал теорему, взаимодополняющую теорему Евклида: каждое совершенное число (четное) имеет вид 2n х (2n+1-1), где 2n+1-1 — простое число. На сегодняшний день все еще существуют нерешенные вопросы относительно совершенных чисел: неизвестно, бесконечен ли их ряд и существуют ли совершенные нечетные числа.
Начнем с последовательности нечетных чисел.
| 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | 29 | 31 | 33 | 35 |
| 37 | 39 | 41 | 43 | 45 | 47 | 49 | 51 | 53 | 55 | 57 | 59 | 61 | 63 | 65 | 67 | 69 |
| 71 | 73 | 75 | 77 | 79 | 81 | 83 | 85 | 87 | 89 | 91 | 93 | 95 | 97 | 99 | 101 | 103 |
Начиная с 3 уберем третьи числа через каждые два.
| 3 | 5 | 7 | | 11 | 13 | | 17 | 19 | | 23 | 25 | | 29 | 31 | | 35 |
| 37 | | 41 | 43 | | 47 | 49 | | 53 | 55 | | 59 | 61 | | 65 | 67 | |
| 71 | 73 | | 77 | 79 | | 83 | 85 | | 89 | 91 | | 95 | 97 | | 101 | 103 |
Начиная с 5 уберем пятые числа через каждые пять и получим следующее.
| 3 | 5 | 7 | | 11 | 13 | | 17 | 19 | | 23 | | | 29 | 31 | | |
| 37 | | 41 | 43 | | 47 | 49 | | 53 | | | 59 | 61 | | | 67 | |
| 71 | 73 | | 77 | 79 | | 83 | | | 89 | 91 | | | 97 | | 101 | 103 |
И так далее. Вот список простых чисел до тысячи.
| 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
| 53 | 59 | 61 | 67 | 71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 |
| 127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 | 179 | 181 | 191 | 193 | 197 |
| 199 | 211 | 223 | 227 | 229 | 233 | 239 | 241 | 251 | 257 | 263 | 269 | 271 | 277 | 281 |
| 283 | 293 | 307 | 311 | 313 | 317 | 331 | 337 | 347 | 349 | 353 | 359 | 367 | 373 | 379 |
| 383 | 389 | 397 | 401 | 409 | 419 | 421 | 431 | 433 | 439 | 443 | 449 | 457 | 461 | 463 |
| 467 | 479 | 487 | 491 | 499 | 503 | 509 | 521 | 523 | 541 | 547 | 557 | 563 | 569 | 571 |
| 577 | 587 | 593 | 599 | 601 | 607 | 613 | 617 | 619 | 631 | 641 | 643 | 647 | 653 | 659 |
| 661 | 673 | 677 | 683 | 691 | 701 | 709 | 719 | 727 | 733 | 739 | 743 | 751 | 757 | 761 |
| 769 | 773 | 787 | 797 | 809 | 811 | 821 | 823 | 827 | 829 | 839 | 853 | 857 | 859 | 863 |
| 877 | 881 | 883 | 887 | 907 | 911 | 919 | 929 | 937 | 941 | 947 | 953 | 967 | 971 | 977 |
| 983 | 991 | 997 |
ПИФАГОРОВА ТРОЙКА