Соты, то есть пространство, заполненное многогранниками, позволяют изучать пространственные фигуры, "находясь" между ними и миром плоскости. (Эта идея пришла в голову в 1897 году Форольду Госсету, молодому английскому юристу, который из-за отсутствия клиентов развлекался тем, что подсчитывал правильные фигуры, имеющие вид на жительство в четвертом, пятом, шестом и вообще любом измерении. Оказалось, что в четырехмерном пространстве их шесть, а в пяти — и более мерном живут лишь три правильных выпуклых многогранника — аналоги куба, тетраэдра и октаэдра. Правда, доказал это не Госсет, а Стрингхэм еще в 1880 году[12]. Но мысли Госсета о многомерных сотах математики не оценили, и скромный юрист вернулся к своим законам. Однако когда в журнале "Нейчур" в 1936 году появились стансы Ф. Содди "Поцелуй по расчету", где речь шла о "целующихся" многомерных сферах, Госсет откликнулся: он изложил в стихах часть тех выводов, что почти сорок лет пролежали в его архивах.) Соты помогли найти точную цифру, а именно 0,7797 (ее получил К. Роджерс в 1958 году), выше которой не может быть плотность ни одной упаковки. И в то же время очевидно, что любая меньшая плотность получается как бы сама собой, за счет случайных причин. Об этом и говорит эксперимент Осборна Рейнольдса на морском берегу: путешествуя по мокрому пляжу, мы изменяем упаковку песчинок, делая ее менее плотной, а такие варианты всегда, что называется, "под ногой". Под ударами волн или дождевых капель песчинки располагаются самым плотным из возможных способов. Теперь уже любое воздействие извне, особенно столь грубое, как давление ноги знаменитого ученого, не только не в силах уплотнить песок, но неизбежно разрушает "наиплотнейшеё" расположение песчинок, и потому вода засасывается в поры между ними. Рейнольде, разобравшись в сути явления, не советовал доверять продавцу, который, насыпав зерно в меру, начинает ревностно уминать его, как бы демонстрируя свое бескорыстие. На самом же деле при умелом уминании объем зерна может возрасти процентов на десять, а то и больше.
Еще нагляднее иллюстрирует тот же принцип трюк, проделываемый индийскими факирами. Они, тихонько потряхивая, наполняют кувшин с узким отверстием невареным рисом, а затем несколько раз погружают в него нож — как можно глубже. На десятый-одиннадцатый раз нож вдруг, на удивление всем, не ведающим о наиплотнейших упаковках, застревает, и факир с торжеством держит на нем весь сосуд!
Но, пожалуй, наиболее эффектен фокус, который сумели продемонстрировать сотрудники Научно-исследовательского института железобетона И. Г. Людковский и Ю. С. Волков. Колонны и опоры, придуманные ими, намного прочнее, чем любые из до сих пор известных строителям. Они словно сделаны из специальных дорогих сплавов. А на самом деле их конструкция представляет собой длинную спираль, свитую из проволоки, внутри которой насыпаны шары из стекла или каменного литья. Промежутки между шарами заливают бетоном. Как совершенно правильно пишут авторы сверхпрочной колонны в февральском номере журнала "Бетон и железобетон" за 1971 год, "при свободной укладке шары располагаются компактно, по так называемой кубооктаэдоической системе, когда один шар соприкасается с двенадцатью другими. Заполнение объема шарами составляет 74 процента". То есть одно из уже известных нам расположений пушечных ядер с плотностью 0,7408.
Оказывается, ни материал самих шаров (их можно делать из стекла, камня, шлакоситалла), ни исполнение окружающей их спиральной обоймы (Людковский и Волков предлагают заменить прочную проволоку стеклопластиковой арматурой, которая, кстати, устойчива против коррозии), ни, наконец, состав заполняющего промежутки между шарами раствора (марка бетона) не слишком сильно влияют на прочность колонны. Одна лишь геометрия превращает хрупкое стекло в безотказный металл, многотонным нагрузкам противостоит одна лишь сила математической мысли.
"Мой дом построен по законам самой строгой архитектуры. сам евклид мог бы поучиться, познавая геометрию моих сот", — говорит пчела в "Тысяче и одной ночи". Она права: пчелиная ячейка представляет собой нижнюю половину ромбододекаэдра, одного из полуправильных архимедовых тел, и это решение с точки зрения экономии воска и строительных усилий настолько разумно, что в академических кругах Франции возникла научная дискуссия, итог которой подвел Бернар Фонтенель, заявив, что за пчелами нельзя признать геометрического мышления на уровне Ньютона и Лейбница (хотя они и рассчитывают свои постройки в полном соответствии с открытым этими учеными дифференциальным исчислением и вытекающим из него принципом минимума), но они используют достижения высшей математики, подчиняясь божественному указанию и руководству.