Почему правильные многоугольники, служащие гранями, так уж обязательно должны быть все на одно лицо? И сразу же обретают право на жизнь полуправильные многогранники, описанные еще Архимедом. Они получаются из Платоновых тел либо "отсечением углов", либо "отсечением ребер". Интересно, что две тысячи лет считалось, что архимедовых тел всего тринадцать, и лишь в 1957 году обнаружилось, что верхнюю часть ромбокубооктаэдра, состоящую из пяти квадратов и четырех правильных треугольников, можно повернуть на 45 градусов. Так появился четырнадцатый полуправильный многогранник, который можно было бы назвать ашкинузеэдром — в честь открывшего его советского математика В. Г. Ашкинузе.

24

Итак, к пяти правильным Платоновым и пяти почти правильным, то есть звездчатым, телам Кеплера-Пуансо надо прибавить еще четырнадцать полуправильных тел Архимеда-Ашкинузе. Но тогда уж, по справедливости, надо включить в этот реестр и "почти полуправильные", то есть звездчатые полуправильные многогранники: например, звездчатый кубооктаэдр, изображенный на гравюре М. К. Эсхера "Кристалл". Тут, однако, есть одна тонкость. Если про правильные — обычные и звездчатые — многогранники Огюстен Коши в 1812 году строго доказал, что их может быть только десять, то касательно полуправильных известно лишь, что 14 обычных дают 51 звездчатый. Но исчерпывается ли этим "полуправильное многообразие" — этого сегодняшние геометры не знают[11].

Впрочем, даже если и удастся доказать, что эти фигуры заполняют собой всю "обойму", то и тогда никто не назовет суммарного числа полуправильных фигур. Ведь в их число входят еще две бесконечные серии, описанные Архимедом в трактате "О многогранниках". Это призмы и антипризмы — фигуры, в основаниях которых лежат любые правильные n-угольники, а боковыми гранями служат либо квадраты, либо равносторонние треугольники. Так, словно потешаясь над нашим вполне естественным стремлением провести полную инвентаризацию всех ее тайн, Природа приготовила для нас целых две геометрические бесконечности.

Но это не единственная из ее геометрических шуток.

"Изо всех двухсот миллиардов мужчин, женщин и детей, которые когда-либо прошли по влажному песку с сотворения мира до собрания британской ассоциации в абердине в 1885 году, сколько найдется таких, которые на вопрос "сжался ли песок под вашей ногой?" ответили бы иначе, чем "да!"?" — вопрошал на лекции в Балтиморе лорд Кельвин. И на самом деле, никто не усомнился бы в правильности такого ответа, пока Осборн Рейнольде не доложил в Абердине о своих наблюдениях и выводах. "Когда нога надавливает на песок, плотный после ушедшего прилива, участок, находящийся вокруг ноги, тотчас же становился сухим, — рассказывал он членам Британской ассоциации ученых. — Надавливание ноги расплющивает, расширяет песок, и чем сильнее оно, тем больше воды выдавливается из этого места в окружающее пространство... Поднимая ногу, мы видим, что песок под ней и вокруг этого места через некоторое время снова становится влажным. Это происходит потому, что песок снова сокращается после удаления надавливающих сил и избыток воды выступает на поверхность".

Итак, песок не сжимается, а, наоборот, расширяется под ногой, а когда мы ее убираем, он вновь "сокращается". Это удивительное явление, обнаруженное физиком, могло бы быть предсказано математиком. Оно связано с проблемой так называемой "плотной упаковки равных сфер". А эта проблема, в свою очередь, тесно связана и с нашими многогранниками, и с нашими мозаиками.

25

На плоскости есть две возможности уложить круги: вписав их в квадратную и в шестиугольную мозаику. Интуиция подсказывает, а расчет подтверждает: второй способ позволяет уложить круги более компактно, как говорят, плотность упаковки тут выше. Можно доказать (это и сделал венгерский математик Ласло Фейеш Тот), что более плотной упаковки придумать невозможно.

Впрочем, открытие это совершено миллионы лет назад. Его коллективный автор — пчелы. (Взгляните еще раз на гравюру М. К. Эсхера "Метаморфозы. II". На ней вы увидите, как квадратная мозаика переходит в гексагональную — шестиугольную. "На этом месте, — пишет сам художник, — возникает ассоциация "шестиугольники — соты", и мысль эта поддерживается личинками, которые начинают шевелиться в каждой ячейке".)

26

Перейти на страницу:

Похожие книги