Тогда В+Г-Р = 32+60-90 равно, как и положено, 2. Но зато тогда к этому многограннику неприменимо слово "правильный" — ведь грани его теперь не равносторонние, а всего лишь равнобедренные треугольники.
Красоте малого звездчатого додекаэдра находится на удивление мало места в нашей жизни: он служит разве что светильником, да и то очень редко. Даже изготовители елочных украшений и то не додумались сделать трехмерную звезду, а ею как раз и оказался бы этот многогранник.
И при том его еще и не надо было бы золотить — во всяком случае для геометров: золотое отношение, "божественная" пропорция связывает любой "брусок" каркаса обычного додекаэдра с тем же "бруском", но продолженным до точки встречи в вершине "колючки" кеплеровского ежа. Но Кеплер не додумался, что у полученной им фигуры есть двойник. Это увидел наш старый знакомый Август Фердинанд Мёбиус, а сам многогранник — он называется "большой додекаэдр" — построил французский геометр Луи Пуансо спустя без малого двести лет после кеплеровских звездчатых фигур. Если эти две удивительно красивые фигуры расположить рядом, то станет видна их "взаимность" (25, 26).
О двух других телах Кеплера-Пуансо (большом звездчатом додекаэдре — 27 и большом икосаэдре — 28) тоже можно было бы сказать немало интересного. Но, может быть, лучше просто полюбоваться на них и подумать: ведь удивительное дело, почему и в этой паре, "увидев" одну фигуру, Кеплер честь открытия второй оставил Пуансо?
А теперь, для отдыха глаз и души, еще раз взгляните на гравюру Маурица Эсхера "Порядок и хаос". Вот что пишет о ней сам художник: "Звездчатый додекаэдр, символ математической красоты и порядка, окружен прозрачной сферой. В ней отражена бессмысленная коллекция бесполезных вещей". Мы уже воспользовались одной из них — веревкой, когда говорили о головоломке сэра Уильяма Гамильтона. Тогда же нам понадобился и сам додекаэдр, но только не звездчатый, а обыкновенный — мы позаимствовали его с другой гравюры того же автора — "Рептилии". Посмотрите на нее внимательно, и вам представится случай полюбоваться еще одной мозаикой, составленной на этот раз из одних крокодилов, поверх которой наложена обычная, шестигранная.
"В мире нет места для некрасивой математики", — считал Готфрид Харди.
Обложку прекрасной книги Гарольда Скотта Макдональда Коксетера "Введение в геометрию" (ей тоже очень многим обязана эта "Рапсодия") украшает фигура, которую вычертил в 1932 году Джон Флаундере Петри, сын великого египтолога и — что гораздо интереснее — один из очень немногих людей на Земле, кто умел строить в своем воображении четырехмерные тела, подсчитывать в уме число их элементов и отчетливо представлять себе их взаимное расположение. Вычерченная им фигура, о которой идет речь, вполне земная, трехмерная, но и она была получена довольно непросто. Вписанный в сферу правильный икосаэдр спроецировали на эту сферу из ее центра (29). Все его ребра перешли в дуги большого круга, которые разбили сферу на множество сферических треугольников. (Дуги эти на плоскости изображаются эллипсами, в этом и была основная сложность вычерчивания "фигуры Петри".) Таким образом, правильный многогранник породил правильную сферическую мозаику — узор, покрывающий всю сферу, составленный из одинаковых фигур. (Центральные и периферийные треугольники выглядят разными только из-за того, что спроецированный на сферу икосаэдр пришлось спроецировать еще раз — на плоскость страницы этой книги, а при этом нельзя обойтись без искажений.)
Но у "фигуры Петри" есть еще одно замечательное свойство. Вглядитесь в нее повнимательнее, она того вполне заслуживает. Можно не только получить сеть сферических треугольников из правильного многогранника, но и, наоборот, этой сетью поймать платоново тело, да не одно, а целых два! Шесть треугольников, окружающих вершину, образуют треугольную грань раздувшегося до сферы икосаэдра, а десять треугольников, объединившихся вокруг вершины в центре, — пятиугольную грань такого же додекаэдра. Другие грани вы теперь увидите без труда. И, повинуясь вашей воле, разбитая на черно-белые треугольники сфера, подобно оборотню зрительных иллюзий, преобразуется то в двенадцати, а то и в двадцатигранник. Ничего удивительного в подобной двойственности нет, стоит лишь, вспомнить, что символ Шлефли у икосаэдра {3,5}, а у додекаэдра — {5,3}. То есть они взаимные многогранники: середины граней одного служат вершинами для другого (22).
"Теория многогранников, в частности выпуклых многогранников, — одна из самых увлекательных глав геометрии" — таково мнение Л. А. Люстерника, члена-корреспондента Академии наук СССР, ученого, много сделавшего именно в этой области математики. Не будем же лишать себя удовольствия познакомиться с еще одним — самым многочисленным — отрядом многогранников, имеющих отношение к нашим Платоновым телам. Для этого надо лишь быть последовательным — отказаться еще от одного ограничения.