И еще об одном свойстве солнечных пятен, которое, впрочем, уже упоминалось. Группы возникают далеко не на всей поверхности Солнца, а только в пределах полосы, простирающейся не более чем на 30–35 градусов по обе стороны от солнечного экватора. Шейнер назвал эту полосу
В недрах Солнца вещество ионизовано, следовательно, электрическая проводимость там очень велика. Хорошо известное физикам явление
На сегодняшний день эта уже давно принятая большинством гелиофизиков модель получила прямые подтверждения с помощью метода гелиосейсмологии. Так, в октябре 2003 года на Солнце почти одновременно и недалеко друг от друга возникли три гигантские группы пятен. Регистрация колебаний Солнца с помощью космического аппарата
Как правило, солнечные пятна окружены обширными полями так называемых факелов, также обнаруженных в первых телескопических наблюдениях четыре столетия назад. Они выглядят как яркие (ярче фотосферы!) образования в виде множества ярких точек с характерным размером гранулы (1–1,5 тысячи километров). Отдельные факельные гранулы выстраиваются в цепочки, которые демонстрируют своеобразную ячеистую структуру с характерным размером супергранулы (30–40 тысяч километров).
Измерять магнитные поля факелов сложно, поскольку выяснилось, что здесь напряженность поля гораздо меньше, чем в пятнах, и расщепление спектральных линий незначительно. Типичные значения для напряженности поля факелов – десятки и сотни эрстед. Если поле окажется больше (порядка тысячи эрстед), среди факелов может возникнуть темная деталь зарождающегося пятна.
У факелов есть очень интересное свойство. Они хорошо выделяются на краю Солнца, но когда Солнце поворачивается и факельное поле оказывается вблизи центра диска, контраст факельных гранул падает до обычного уровня обыкновенных гранул, и различить их становится невозможно.
Объяснить это странное явление можно следующим образом. Если представить себе, что факельные гранулы приподняты над фотосферой (над обычными гранулами) и часть энергии излучается «вбок», из боковых стенок конвективного элемента, то увидеть это излучение можно только глядя сбоку – например, когда наш взгляд падает не радиально к Солнцу, а почти по касательной к солнечному шару. Это и происходит при наблюдениях факелов вблизи видимого края диска светила. Об этой идее еще в 1979 году автору рассказал руководитель его дипломной работы, отечественный гелиофизик Эдвард Владимирович Кононович (1931–2017). Так оно и оказалось…
Откуда берется дополнительная энергия факелов? Можно вспомнить, что в пятнах наблюдается дефицит излучаемой энергии. Но энергии, поступающей снизу, из недр Солнца, нужно куда-то деваться, и если ее меньше выйдет на поверхность в пятнах, то ее должно больше выйти вокруг пятен – в факелах!
Кроме того, слабое магнитное поле факелов (оно здесь преимущественно вертикальное) препятствует движениям в поперечном (горизонтальном) направлении. Это облегчает конвекцию, и конвективные потоки в факелах прорываются несколько выше, чем в зоне обычной грануляции.
Факелы – довольно устойчивые образования. Они могут существовать многие недели и месяцы. Обычно факельная площадка возникает до появления пятен, ее площадь увеличивается. Когда среди факелов возникают первые пятна, вокруг формируется обширное факельное поле, которое долго (пару месяцев) существует после исчезновения последних пятен. По внешнему виду факелов опытный наблюдатель может оценить их возраст: со временем плавно меняются контраст факелов и их общая структура.