Пятна и факелы на фоне вездесущей грануляции – это практически все проявления солнечной активности, которые можно увидеть на уровне фотосферы без специальных фильтров. (Впрочем, есть еще один тип факелов, не связанных с пятнами, – это так называемые полярные факелы, которые возникают на высоких широтах за пределами королевских зон и выглядят как отдельные яркие точки.)

С наблюдений именно этих двух типов образований (пятен и факелов) начался мониторинг солнечной активности, который ведется с перерывами уже почти четыре столетия. Но если мы будем подниматься над фотосферой и попытаемся исследовать области хромосферы и короны с помощью спектральных методов и специальных фильтров, мы неожиданно обнаружим гораздо более богатую и разнообразную картину, которая обычно остается незаметной!

Наблюдать хромосферные и корональные проявления солнечной активности трудно. Плотность плазмы там, как сказано выше, чрезвычайно мала, и эти слои практически прозрачны. Если убрать яркий свет, который идет снизу, от фотосферы, и оставить только слабый свет в каком-нибудь очень узком спектральном диапазоне (шириной порядка ширины спектральной линии), тогда есть шанс увидеть структуры хромосферы и короны, которые излучают именно на этой длине волны.

Это можно сделать с помощью спектрогелиографа, как когда-то делал Хэйл (для этого надо просканировать все изображение Солнца с помощью спектрографа и построить изображение диска Солнца в лучах выбранной линии). Гораздо удобнее это делать с помощью уже упоминавшихся выше ИПФ – интерференционно-поляризационных фильтров, пропускающих свет в чрезвычайно узком спектральном диапазоне (например, в свете линии водорода Н-альфа). В последнее время могут использоваться более простые и дешевые интерференционные фильтры, ширина полосы пропускания которых приближается к параметрам ИПФ. Они тоже позволяют наблюдать хромосферу Солнца в линии водорода.

Картина в свете водорода (это основной элемент на Солнце!) выглядит ошеломляюще. Мы получаем возможность проанализировать новый, более высокий срез солнечной атмосферы, расположенный примерно в 1200–1700 километрах над фотосферой.

Первое, что бросается в глаза, – это пятна. В хромосфере они тоже видны, но хуже, чем в фотосфере. Обычно хорошо просматриваются темные тени пятен, а вот полутени выглядят уже по-другому. Дело в том, что хромосфера, в отличие от фотосферы, значительно сильнее ионизована. Здесь работает главный закон плазмы – вмороженность магнитного поля в вещество. Это означает, что вещество может двигаться только вдоль силовых линий магнитного поля, и струи плазмы будут ориентироваться вдоль поля так же, как железные опилки в школьном опыте с магнитом.

На фильтрограммах (изображениях хромосферы, сфотографированных сквозь узкополосные фильтры) видно, что волокна полутени продолжаются далеко за пределы пятна, переходя в так называемую суперполутень, или системы квазигоризонтальных волоконец (фибрилл). В результате группа пятен оказывается охваченной обширными областями возмущенной хромосферы, где видны изгибающиеся «потоки» фибрилл. Именно эта картина, впервые увиденная Хэйлом, привела его к догадке об игре магнитных полей. Важно не забывать, что называемые «волоконцами» или «фибриллами» структуры имеют гигантские по земным меркам размеры: при толщине полторы-две тысячи километров они имеют длину порядка 30 тысяч километров, а в ряде случаев и больше! Это сформированные магнитными полями изогнутые трубки, вдоль которых непрерывно течет солнечная плазма.

Над факелами в хромосфере тоже наблюдаются яркие образования. Здесь, на хромосферном уровне, они называются флоккулами. Яркие области флоккулов представляют собой своеобразные «навершия» факелов – при наложении снимков фотосферы и более высокого слоя хромосферы зоны расположения факелов и флоккулов совпадают. Но, в отличие от факелов, флоккулы великолепно видны не только на краю Солнца, но и во всей королевской зоне!

Снимки с хорошим качеством позволяют обнаружить важную закономерность флоккулов. Их яркие узелки располагаются в основном на стыках ячеек супергрануляционной сетки – они обрисовывают границы поднимающихся конвективных потоков второго характерного размера (мы уже упоминали, что размер супергранулы составляет 30–40 тысяч километров). На этих высотах конвекции уже нет, но структура конвективных ячеек сохраняется: именно на границах, и особенно на стыках нескольких супергранул, концентрируются вертикальные магнитные поля. Если магнитное поле усилено, то яркое свечение может занимать всю границу супергрануляционной сетки, а то и внутреннюю часть ячейки. В таких случаях образуется флоккул. Опытный взгляд наблюдателя может сразу определить по внешнему виду флоккулов, где поле сильнее, а где слабее, и даже оценить его напряженность по внешнему виду.

Перейти на страницу:

Все книги серии Лекторий. Как устроен мир

Похожие книги