Книга Пачоли была посвящена прежде всего золотому сечению, или «божественной пропорции» — иррациональному числу, которое выражает соотношение двух величин и часто встречается в числовых рядах, в геометрии и в искусстве. Это число Φ (
Евклид писал о золотом сечении еще около 300 г. до н. э., и с тех пор число Φ всегда притягивало математиков. Пачоли первым присвоил ему название «божественной пропорции». В книге, так и озаглавленной (на латыни —
С другой стороны, Леонардо действительно интересовался гармоничными пропорциями и внимательно изучал, как они проявляются в анатомии, науке и искусстве. Этот интерес побуждал его выискивать сходство между пропорционально сложенным человеческим телом, музыкальной гармонией и другими соотношениями, которые присутствуют в творениях природы и воспринимаются как прекрасные.
Преобразование форм
Леонардо-художника особенно интересовало, как преобразуются формы предметов при движении. Когда он наблюдал за течением воды, у него сложилось представление о сохранении объема: при перетекании определенного количества воды форма ее изменяется, но объем остается прежним.
Понимание того, как преобразуются объемы, было очень полезно для художника — тем более для такого, как Леонардо, который чаще всего изображал тела в движении. Это помогало ему представлять, как форма предмета способна искажаться или преображаться, при том что объем его остается неизменным. «Вещь, которая движется, забирает столько пространства, сколько теряет», — писал он[390]. Это относится не только к количеству перелившейся воды, но и к согнутой руке, и к перекрученному человеческому торсу.
Леонардо все больше занимал вопрос о том, как можно использовать геометрию для понимания природных явлений, и он принялся исследовать разные теоретические случаи, в которых наблюдалось сохранение объема при преобразовании одной геометрической фигуры в другую. Например, можно было взять квадрат и преобразовать его в круг, который имел бы ровно такую же площадь. А в трехмерном пространстве можно было бы показать, как сфера превращается в куб, сохраняя прежний объем.
Силясь произвести подобные преобразования и постоянно записывая свои догадки, Леонардо способствовал возникновению топологии — раздела математики, который изучает свойства пространств, остающихся неизменными при различных деформациях. Мы видим, как он испещряет тетрадь за тетрадью (то упорно и одержимо, то рассеянно и машинально) серповидными фигурами, которые затем преобразует в прямоугольники той же площади, а иногда проделывает то же самое с пирамидами и конусами[391]. Леонардо умел зарисовывать подобные преобразования, просто представляя их мысленно, а иногда он проводил такие эксперименты при помощи мягкого воска. Но он не очень-то умел обращаться с алгебраическими инструментами геометрии, которые требовали перемножать квадраты, квадратные корни, кубы и кубические корни чисел. «Научись умножению корней у маэстро Луки», — записал он в тетради, имея в виду Пачоли. Однако Леонардо так и не овладел этими премудростями и потому до конца жизни пытался совершать геометрические преобразования, прибегая не к уравнениям, а к рисункам[392].
Он начал собирать воедино свои записи, посвященные этой теме, а в 1505 году объявил о намерении написать книгу, «озаглавленную „О преобразовании“, т. е. о преобразовании одного тела в другое без убавления или возрастания материи»[393]. Этот трактат постигла та же судьба, что и все прочие: он так и остался блестящим черновиком на страницах тетрадей, но не превратился в печатную книгу.
Квадратура круга