b) Этот принцип, вообще говоря, есть принцип сводимости числа на то или иное число натурального ряда, на то или иное целое число. Но в чем заключается эта сводимость? Она заключается в применении тех или других из шести арифметико–алгебраических действий. В чем же общцй принцип этих действий? Ниже, в специальном отделе, мы подвергнем эти действия подробному анализу. Сейчас же нам важно только то одно фундаментальное обстоятельство, что всякая операция выводит данное число из его уединения, приобщает его к тому или иному инобытию, и что арифметические операции различаются между собою только законом приобщения числа к этому инобытию. Мы увидим (§ 116), что, если это приобщение происходит по типу самотождественного различия, мы получаем сложение и вычитание; если по типу подвижного покоя, то получаются умножение и деление; и, наконец, если по типу бытия–небытия (т. е. по типу алогического или органического становления), то получаем возведение в степень и извлечение корня. Всем этим операциям обще то, что они берут к данному числу его инобытие не во всяком смысле, но инобытие как таковое, инобытие как принцип, неразвернутое инобытие, только самый факт инобытия, не входя во внутреннюю жизнь этого инобытия и не приобщая этой внутренней развернутости инобытия числа к самому числу. Что такое сложение и вычитание? Сложение и вычитание сопоставляет данное число с другими числами, т. е. с фактом существования других чисел, а затем категория самотождественного различия, примененная ко всему ряду этих сопоставленных чисел, и приводит нас от самих этих чисел к их сумме или разности. Что такое умножение и деление? Умножение й деление сопоставляет перед нами несколько чисел, т. е. указывает на факт существования таких–то чисел, а потом категория подвижного покоя, примененная к этому ряду чисел, заставляет последовательно одно число переноситься в сферу другого числа и воспроизводиться в нем, и мы получаем произведение или частное. Точно так же и в остальных двух действиях алогическое становление (совокупное функционирование бытия и небытия) заставляет одно число повториться целиком в каждой своей части и тем самым превращает два инобытийно противостоящих числа (напр., основание и показатель степени) в органически спаянную целостность, где одно число повторило себя самого по закону другого числа.

Так или иначе, но везде мы имеем здесь 1) число и 2) его инобытие, причем 3) это инобытие дано не развернуто, но лишь как принцип, т. е. оно имеет здесь единственную функцию—выставить напоказ самый факт существования тех или других инобытийных чисел. Это проще всего в сложении: инобытие действует только в том единственном смысле, что оно кроме одного числа, называемого теперь слагаемым, устанавливает факт другого числа, получающего название слагаемого. Так и во всех других действиях.

с) Следовательно, как же мы теперь должны понимать принцип «алгебраичности» в изучаемом нами контексте? Как принцип сводимости данного числа на целое число он оказывается не чем иным, как принципом сопоставления данного числа с его инобытием в простейшем акте полагания этого инобытия. Это инобытие могло бы быть дано не только как простейший акт полагания. Последний мог бы тут развернуться в становящийся, в ставший и даже в выразительный акт полагания. Но в алгебраическом числе этого нет. Алгебраическое число предполагает просто инобытие как годай принцип, без всякой его развернутости. Отсюда и предопределенность всякого числа быть сводимым на целое число.

4. Теперь мы можем и более сознательно отнестись к тому, что такое алгебраическая иррациональность. Поскольку она предполагает в качестве своего .инобытия только те или иные простейшие акты полагания, т. е. поскольку она сводима к целости и может быть из нее получена, постольку единственным источником алгебраической иррациональности может быть только операция извлечения корня. Когда мы извлекаем неизвлекающийся корень, то мы ведь ничего иного не делаем, как просто известным образом сопоставляем два целых числа, и больше Ничего. Следовательно, даже в случае иррациональности инобытие действует не больше как только выставление другого целого числа, инобытийного к данному. Алгебраическая иррациональность и есть не что иное, как образ соотношения двух целых чисел. Становление, необходимое для структуры этой иррациональности (т. е. бесконечное количество десятичных знаков при извлечении «неизвлекающегося» корня), действует здесь как таковое, без всякого принципиального усложнения и расширения; оно реально есть сила, выставляющая один за другим эти десятичные знаки, и притом абсолютно одинаковая в каждом таком знаке. Оно—то ровное поле, на котором бесконечно возникают все более и более мелкие дроби, стремящиеся к недостижимому пределу; и это поле одинаково равнодушно ко всем отдельным моментам этого бесконечного процесса. Иррациональность с таким алогическим становлением в основе мы и называем алгебраической иррациональностью.

Перейти на страницу:

Похожие книги