b) Природа типов числа заставила нас конструировать такие три диалектические последовательности: 1) положительное число, отрицательное, нуль; 2) целое, дробное, бесконечное; 3) рациональное, иррациональное, мнимое. Эти последовательности очень естественны; и если последняя еще может представлять некоторую новость для не мыслящих диалектически математиков, то первые две являются во всяком случае довольно банальным местом даже у математиков. Эту привычку и математического, и нематематического ума противопоставлять положительному числу отрицательное и проводить границу между ними в нуле, а также привычку противопоставлять целому числу дробное и мыслить (в теории множеств) бесконечность как эквиваленцию целого и части, — эти навыки нельзя было просто отбросить хотя бы и ради правильной диалектической системы; с ними пришлось считаться как с типовыми, чтобы уже впоследствии интерпретировать их с точки зрения этой общей системы. Теперь этот момент наступил; и мы должны отдать себе полный отчет в том, каково же значение всей этой классификации с точки зрения нашей общей методологии.
c) Обратим внимание на то, что мы конструировали все изученные нами типы числа не только в тех трех направлениях, которые только что указаны нами, но еще и в ином направлении. А именно, позволительно (и очень полезно) было брать только тезисы этих рядов и, понимая их как чисто целое, противопоставлять их антитезисам, взятым тоже как целое, а затем—находить завершение в синтезах, понимаемых, конечно, опять в их целостной совокупности. Тогда получалась у нас другая система, именно: 1) положительное число, целое, рациональное; 2) отрицательное, дробное, иррациональное; 3) нуль, бесконечность, мнимое. Фактически диалектика типов числа в этой именно последовательности приводилась у нас—для первого ряда в § 99, для второго в § 100 и для третьего в § 105. Вот на этом–то втором способе расположения числовых типов мы сейчас и остановимся.
d) Что он собой представляет? Первый ряд вполне отчетливо строится по типу той установки, которая в общей теории числа (§ 15) носила у нас название акта полагания или, точнее, раздельного, единораздельного акта полагания. «Положительное число» — это и есть ведь не что иное, как чистый акт полагания числа после того, как оно сформировано во всей своей категориальной законченности. «Целое число» обращает это полагание вовнутрь числа, производит полагаиие внутреннего содержания числа, а «рациональное число», как это совершенно очевидно, объединяет оба эти акта.
Что такое теперь второй ряд? Едва ли нужно еще доказывать после всех разъяснений общей теории, что он есть переход акта полагания в инобытие, а именно в сферу становления. И становление это тоже дается тут на разных стадиях диалектической зрелости. Отрицательное число полагает стихию становления только лишь как принцип, не развертывая ее в нечто самостоятельное. Дробь уже вносит в нее разнообразные дифференциации, а иррациональное число развивает ее в самостоятельную алогическую последовательность.
Наконец, третий ряд, как это тоже нетрудно заметить, существенно останавливает поток становления, зародившийся во втором ряду, преграждая его дальнейшее развитие и полагая ему границу. Нуль есть такая граница в ее принципиальной положенности; бесконечность развертывает эту границу во всей ее инобытийной мощи; мнимость синтезирует то и другое в некую конечную перспективную структуру числа. Если мы, по примеру общей теории (§ 21), назовем этот диалектический момент «фактом», «ставшим», «наличным бытием», «инфра–актом» [881]то, очевидно, мы будем правы.
e) Отсюда сама собой получается и та руководящая нить, которую мы искали для конструирования дальнейших типов числа, а вместе с тем и гарантия того, что мы не пропустим какого–нибудь основного типа числа в будущем. Именно, за «фактом», или «ставшим», общая диалектика требует категории выражения, энергии (в смысловом отношении), или эманации. Стало быть, мы должны конструировать теперь такой тип числа, который по самой своей структуре содержал бы стадию энергийного выражения, или числовой эманации.
2. Что же это за число? Сначала обрисуем его общее понятие, а потом уже будем рассматривать его математические построения.
а) Вспомним, как мы понимали «выражение» в общей теории числа (§ 31) и как пользовались этой категорией при случае (напр., в § 35). Выражение есть соотнесенность с инобытием в условии субстанционального отсутствия самого этого инобытия. Выражение поэтому всегда по меньшей мере двупланово. Один слой в нем— отвлеченно–смысловой, образовавшийся в результате превращения эйдоса через становление в некую ставшую структуру; и второй слой в нем—это перекрытость его теми или другими инобытийными самосоотношениями. В другом месте (§ 69) нам пришлось также поставить «выражение» в существенную связь с «пониманием», которое в отличие от «мышления» также предполагает некую определенную смысловую двуплановость предмета.