Прежде чем расстаться с законами Юнга, скажем несколько слов об их создателе. Томас Юнг был удивительным человеком. " Всякий может делать то, что делают другие" — таков был девиз его жизни. И Юнг необычайно преуспел в исполнении этого нелегкого правила. Он был цирковым актером (акробатом и канатоходцем), авторитетным знатоком живописи, играл практически на всех су. Шествовавших в его время музыкальных инструментах, занимался расшифровкой египетских иероглифов, знал массу языков, в том числе латинский, греческий и арабский. И кроме всех этих "увлечений", Юнг получил блестящие результаты в науках: физике (волновая теория света), теории упругости (модуль упругости Юнга), оптике, акустике, астрономии, физиологии, медицине. Юнг написал около 60 глав научных приложений к знаменитой "Британской энциклопедии".
Рассмотрим подробнее основной тон струны. Вспоминая, что
откуда легко увидеть законы колебания струны, которые экспериментально обнаружили еще древние греки и которые затем переоткрыл и описал в своей "Универсальной гармонии" Марен Мерсенн:
1. Для струн одинаковой плотности и одинакового натяжения частота колебания обратно пропорциональна длине струны (это не что иное, как "первый закон Пифагора — Архита"; см. с. 101).
2. При заданной длине и плотности струны ее частота пропорциональна корню квадратному из натяжения.
3. При заданной длине и натяжении частота струны обратно пропорциональна корню квадратному из ее плотности. (При постоянной плотности чем толще струна, тем меньше частота ее колебаний, т. е. тем ниже звук.)
Разумеется, все эти законы (по крайней мере, качественно) можно было установить на монохорде.
Но обратимся вновь к обертонам. Легко видеть, что частоты обертонов
Таким образом, струна издает целый звукоряд тонов, называемый натуральным звукорядом. Теоретически натуральный звукоряд бесконечен. На практике же имеют значение первые 16 обертонов, так как остальные обертоны слишком мало отличаются друг от друга, обладают слишком малой энергией и фактически не слышны.
Натуральный звукоряд. Полагая ω1 = l, частоты натурального звукоряда выражаются натуральным рядом чисел (ωn = n). Натуральный звукоряд содержит все консонансы и все интервалы чистого строя
В самом деле, из (10.12) следует, что интервальный коэффициент двух соседних гармоник ωn и ωn+1 равен
На рисунке показаны первые 16 гармоник колеблющейся струны, образующие натуральный звукоряд. Цифры справа обозначают частоты гармоник, считая ω1 = 1, а красная линия (гипербола) отсекает часть струны 1/n, которая колеблется с частотой ωn = n. Мы видим, что второй обертон и основной тон составляют интервал октавы ω2/ω1 = 2. Третий и второй обертоны — интервал квинты: ω3/ω2 = 3/2. Четвертый и третий — кварты: ω4/ω3 = 4/3. Пятый и четвертый — большой терции: ω5/ω4 = 5/4. Шестой и пятый — малой терции: ω6/ω5 = 6/5. Но ведь это есть не что иное, как набор совершенных и несовершенных консонансов! Таким образом, мы пришли к разгадке "закона консонансов" — "второго закона Пифагора — Архита" (с. 101 — 102): консонантные интервалы, которые математически выражаются отношением
вида
Переходя к более высоким гармоникам, нетрудно обнаружить также два интервала тона чистого строя: ω9/ω8 = 9/8, ω10/ω9 = 10/9 и интервал полутона чистого строя: ω16/ω15 = 16/15. Таким образом,
Но и сами тона чистого строя (8.7) почти полностью определены натуральным звукорядом. В самом деле, если рассмотреть октаву между 8-й и 16-й гармониками, принимая частоту 8-й гармоники за единицу (т. е. поделив все частоты на 8), то мы обнаружим в этой октаве все ступени чистого строя, кроме 4-й (4/3) и 6-й (5/3). Следовательно,