Другая главная область, в которой пользуются дифференциальным исчислением, это механика; мимоходом мы уже коснулись значения различных степенных функций, получающихся при элементарных уравнениях ее предмета, движения; здесь я буду говорить о них непосредственно. Уравнение, а именно математическое выражение просто равномерного движения с = - s/t или s = ct, в котором пройденные пространства пропорциональны протекшим временам по некоторой эмпирической единице с, величине скорости, не имеет смысла дифференцировать; коэффициент с уже совершенно определен и известен, и здесь не может иметь место никакое дальнейшее разложение в степенной рад. - Как анализируется s = at2, уравнение падения тел, об этом мы уже упоминали выше; первый член анализа ds/dt = 2at понимается и словесно, и, соответственно, реально так, что он член некоторой суммы, (каковое представление мы уже давно отклонили), одна часть движения, и притом та часть его, которая приписывается силе инерции, т. е. просто равномерной скорости, таким образом, будто в бесконечно малых частях времени движение равномерное, а в конечных частях времени, т. е. в существующих на самом деле, неравномерное. Разумеется, /s = 2at, и значение а и t, взятых сами по себе, известно, равно как известно и то, что тем самым положено определение скорости равномерного движения:
Так как a=s/t2 , то вообще 2at=2s/t, но этим мы нисколько не
подвинулись вперед в нашем знании; лишь ошибочное предположение, будто 2at есть часть движения как некоторой суммы, дает ложную видимость положения физики. Самый множитель, а, эмпирическая единица - некоторое определенное количество, как таковое, - приписывается тяготению; если здесь применяют категорию силы тяготения, то нужно сказать, что, наоборот, как раз целое s=at2 есть действие или, лучше сказать, закон тяготения. - Также верно и выведенное из ds/dt=2at положение, что если бы прекратилось действие силы тяжести, то тело со скоростью, достигнутой им в конце своего падения, прошло бы во время, равное времени его падения, пространство вдвое большее пройденного. - В этом положении заключается также и сама по себе превратная метафизика: конец падения или конец той части времени, в которое падало тело, всегда сам еще есть некоторая часть времени; если бы он не был частью времени, то наступил бы покой, и, следовательно, не было бы никакой скорости; скорость может быть измерена лишь по пространству, пройденному в некоторую часть времени, а не в конце ее. Если же, кроме того, и в других физических областях, где вовсе нет никакого движения, как, например, в действии света (помимо того, что называют его распространением в пространстве) и в определениях величин у цветов, применяют дифференциальное исчисление, и первая [производная] функция некоторой квадратной функции здесь
также именуется скоростью, то это следует рассматривать как еще более неуместный формализм выдумывания существования.
Движение, изображаемое уравнением s = at2, говорит Лагранж, мы находим при падении тел; простейшим следующим за ним было бы движение, уравнением которого было бы s=ct3, но такого рода движения не оказывается в природе; мы не знали бы, что мог бы означать собой коэффициент с. Если это верно, то, напротив, имеется движение, уравнение которого - s3 ° at2 - кеплеровский закон движения тел Солнечной системы. И выяснение того, что здесь должна означать первая производная функция -у и т. д., а также дальнейшая непосредственная разработка этого уравнения путем дифференцирования, открытие законов и определений указанного абсолютного движения, отправляясь от этой исходной точки, должно бы, конечно, представлять собой интересную задачу, в решении которой анализ явил бы себя в самом надлежащем блеске.
Само по себе взятое таким образом применение дифференциального исчисления к элементарным уравнениям движения не представляет никакого реального интереса; формальный же интерес проистекает из общего механизма исчисления. Но иное значение приобретает разложение движения в отношении определения его траектории; если последняя есть кривая и ее уравнение содержит более высокие степени, то требуются переходы от прямолинейных функций как функций возведения в степень к самим степеням, а так как первые должны быть выведены из первоначального уравнения движения, содержащего фактор времени с элиминированием времени, то этот фактор должен быть также низведен к тем низшим функциям, которые получаются в результате разложения в ряд и из которых можно выводить указанные уравнения линейных определений. Эта сторона возбуждает интерес к другой части дифференциального исчисления.