Из этих двух функций производная, или, как она была определена выше, функция возведения в степень, есть здесь, в интегральном исчислении, данная по отношению к первоначальной функции, которая еще должна быть найдена из нее путем интегрирования. Однако первая дана не непосредственно, равно как не дано само по себе, какую часть или какое определение математического предмета должно рассматривать как производную функцию, дабы, приводя ее к первоначальной функции, найти другую часть или другое определение [предмета], установить величину которого требует задача. Обычный метод, сразу же представляющий, как мы сказали, некоторые части предмета как бесконечно малые в форме производных функций, определимых из первоначально данного уравнения предмета вообще посредством дифференцирования (как, [например], для выпрямления кривой - бесконечно малые абсциссы и ординаты), принимает за таковые те части или определения, которые можно привести в такую связь с предметом задачи (в нашем примере с дугой), также представляемым как бесконечно малый, которая установлена элементарной математикой, благодаря чему, если /известны упомянутые части, определяется и та часть, величину которой требуется найти; так, для выпрямления кривой приводятся в связь в виде уравнения прямоугольного треугольника указанные выше три бесконечно малых, для [ее] квадратуры приводятся в связь некоторого произведения ордината и бесконечно малая абсцисса, причем поверхность вообще принимается арифметически за произведение линий. Переход от этих так называемых элементов поверхности, дуги и т. д. к величине самих поверхностей, дуги и т. д. считается в этом случае лишь восхождением от бесконечного выражения к конечному или к сумме бесконечно многих элементов, из которых, согласно предположению, состоит искомая величина.

Можно поэтому сказать, не вникая в суть, что интегральное исчисление это лишь обратная, но вообще более трудная задача дифференциального исчисления. Дело обстоит скорее так, что реальный интерес интегрального исчисления направлен исключительно на взаимное отношение первоначальной и производной функции в конкретных предметах.

Лагранж и в этой части исчисления не соглашался отделаться от трудности проблем легким способом, основанным на указанных выше прямых допущениях. Для разъяснения сущности дела будет полезно привести здесь также и некоторые подробности его метода на немногих примерах. Этот метод ставит себе задачей как раз особо доказать, что между отдельными определениями некоторого математического целого, например некоторой кривой, имеется отношение первоначальной функции к производной. Но в силу природы самого отношения, приводящего в связь в некотором математическом предмете кривые с прямыми линиями, линейные измерения и функции с поверхностно-плоскостными измерениями и их функцией и т. д., приводящего, следовательно, в связь качественно разное, это нельзя выполнить прямым путем, и определение, таким образом, можно понимать лишь как середину между чем-то большим и чем-то меньшим. Благодаря этому, правда, само собой вновь появляется форма приращения с плюсом и минусом, и бодрое "developpons" ["развернем в ряд"] снова очутилось на своем месте; но мы уже говорили о том, что приращения имеют здесь лишь арифметическое значение, значение чего-то конечного. Из анализа (Entwicklung) того условия, что определимая величина больше легко определяемого предела и меньше другого предела, выводится, например, что функция ординаты есть первая производная функция к функции плоскости.

Выпрямление кривых по способу Лагранжа, который исходит при этом из архимедовского принципа, заслуживает внимания тем, что оно проливает свет на перевод архимедовского метода в принцип новейшего анализа, а это позволяет бросить взгляд на суть и истинный смысл действия, механически производимого другим путем. Способ действия по необходимости аналогичен только что указанному способу. Архимедовский принцип, согласно которому дуга кривой больше соответствующей ей хорды и меньше суммы двух касательных, проведенных в конечных точках дуги, поскольку эти касательные заключены между этими точками и точкой их пересечения, не дает прямого уравнения. Переводом этого архимедовского основного определения в новейшую аналитическую форму служит изобретение такого выражения, которое, взятое само по себе, есть простое основное уравнение, между тем как указанная форма лишь выставляет требование продвигаться в бесконечность между слишком большим и слишком малым, которые каждый раз обретают определенность, и это продвижение опять-таки приводит лишь к новому слишком большому и к новому слишком малому, однако во все более узких границах. Посредством формализма бесконечно малых сразу же получается уравнение dz2 =dx2 + dy2. Лагранжево изложение, исходя из названной нами основы, доказывает, напротив, что величина дуги есть первоначальная функция к некоей производной функции, характерный член которой сам есть функция отношения производной функции к первоначальной функции ординаты.

Перейти на страницу:

Похожие книги