По сравнению с указанными определениями является очень отсталым представление о бесконечно малых величинах, содержащееся также и в самих представлениях о приращении или убывании. Согласно представлению о бесконечно малых величинах, они носят такой характер, что следует пренебрегать не только ими самими по отношению к конечным величинам, но также их высшими порядками по отношению к низшим, а равно произведениями нескольких таких величин по отношению к одной. У Лейбница особенно ярко выступает это требование о таком пренебрежении, применению какового давали место также и предыдущие изобретатели методов, касающихся этих величин. Именно это обстоятельство сообщает указанному исчислению при всем выигрыше в удобстве видимость неточности и явной неправильности хода его действий. Вольф стремился сделать это пренебрежение величинами понятными по обычному своему способу делать популярными излагаемые им вопросы, т. е. путем нарушения чистоты понятия и подстановки на его место неправильных чувственных представлений. А именно он сравнивает пренебрежение бесконечно малыми разностями высших порядков относительно низших с образом действия геометра, измерение которым высоты горы нисколько не делается менее точным, если ветер снесет песчинку с ее вершины, или с пренебрежением высотой домов и башен при вычислении лунных затмений (Element. Mathes. univ., Tom I, El. Analys. math., P. II, С I, см. Schol.).
Если снисходительная справедливость (die Billigkeit) здравого человеческого рассудка и допускает такую неточность, то все геометры, напротив, отвергали такого рода представление. Сама собою напрашивается мысль, что в математической науке не идет речь о такой эмпирической точности и что математическое измерение путем ли вычислений или путем геометрических построений и доказательств совершенно отлично от землемерия, от измерения данных в опыте линий, фигур и т. п. Да и помимо того, как уже было указано выше, аналитики, сравнивая между собою результаты, получаемые строго геометрическим путем, с результатами, получаемыми посредством метода бесконечно малых разностей, доказывают, что они тождественны и что большая или меньшая точность здесь вовсе не имеет места. А ведь само собою понятно, что абсолютно точный результат не мог бы получиться из неточного хода действия. Однако, с другой стороны, несмотря на протесты против этого способа оправдания, никак нельзя обойтись без самого этого приема – без пренебрежения величиной на основании ее незначительности. И в этом состоит трудность, заставляющая аналитиков стараться сделать понятным и устранить заключающуюся здесь бессмыслицу.