По этому вопросу следует главным образом привести мнение Эйлера. Полагая в основание общее определение Ньютона, он настаивает на том, что дифференциальное исчисление рассматривает отношения приращений некоторой величины, причем, однако, бесконечно малая разность как таковая должна быть рассматриваема совершенно как нуль (Institut Calc. different., р. I, с. III). Как это следует понимать, видно из вышеизложенного; бесконечно малая разность есть нуль лишь по количеству, а не качественный нуль; а как нуль по количеству, она есть лишь чистый момент отношения. Она не есть различие на некоторую величину. Но именно потому, с одной стороны, вообще ошибочно называть моменты, именуемые бесконечно малыми величинами, также и приращениями или убываниями и разностями. В основании этого определения лежит предположение, что к первоначально имеющейся конечной величине нечто прибавляется или нечто от нее отнимается, что совершается некоторое вычитание или сложение, некоторое арифметическое, внешнее действие. Но что касается перехода от функции переменной величины к ее дифференциалу, то по нему видно, что он носит совершенно другой характер, а именно, как мы уже разъяснили, он должен рассматриваться как сведение конечной функции к качественному отношению ее количественных определений. С другой стороны, сразу бросается в глаза, что когда говорят, что приращения суть сами по себе нули и что рассматриваются лишь их отношения, то это само по себе ошибочно, ибо нуль уже не имеет вообще никакой определенности. Это представление, стало быть, хотя и доходит до отрицания количества и определенно высказывает это отрицание, не схватывает вместе с тем последнего в его положительном значении качественных определений количества, которые, если пожелаем вырвать их из отношения и брать их как определенные количества, окажутся лишь нулями. Лагранж (Théorie des fonct. analyt. Introd.) замечает о представлении пределов или последних отношений, что, хотя и можно очень хорошо представить себе отношение двух величин, покуда они остаются конечными, это отношение не дает рассудку ясного и определенного понятия, как только его члены становятся одновременно нулями. И в самом деле, рассудок должен пойти далее той чисто отрицательной стороны, что члены отношения суть как определенные количества нули, и понять их положительно как качественные моменты. А то, что Эйлер (в указанном месте § 84 и сл.) прибавляет далее касательно данного им определения, чтобы показать, что две так называемые бесконечно малые величины, которые якобы суть не что иное, как нули, тем не менее находятся в отношении друг к другу, и потому для их обозначения употребляется не знак нуля, а другие знаки, – не может быть признано удовлетворительным. Он хочет это обосновать различием между арифметическим и геометрическим отношениями; в первом мы обращаем внимание на разность, во втором – на частное, и, хотя арифметическое отношение между любыми двумя нулями всегда одинаково, это не значит, что можно сказать то же самое о геометрическом отношении; если 2:1=0:0, то по свойству пропорции, так как первый член вдвое больше второго, третий член тоже должен быть вдвое больше четвертого; поэтому на основании этой пропорции отношение 0:0 должно быть взято как отношение 2:1. Также и по обычной арифметике n×0=0; следовательно, n:1=0:0. Однако именно потому, что 2:1 или n:1 есть отношение определенных количеств, ему не соответствует ни отношение, ни обозначение 0: 0.

Я воздерживаюсь от дальнейшего увеличения числа приведенных взглядов, так как рассмотренные уже достаточно показали, что в них, правда, скрыто содержится истинное понятие бесконечного, но что оно, однако, не выделено и не сформулировано во всей его определенности. Поэтому, когда высказывающие эти взгляды переходят к самому действию, то на нем не может сказаться истинное определение понятия, а, напротив, возвращается снова конечная определенность количества, и действие не может обойтись без представления о лишь относительно малом. Исчисление делает необходимым подвергать так называемые бесконечные величины обычным арифметическим действиям сложения и т. д., основанным на природе конечных величин, и тем самым хотя бы на мгновение признавать эти бесконечные величины конечными и трактовать их как таковые. Исчисление должно было бы обосновать правомерность того, что оно, с одной стороны, тянет эти величины вниз, вовлекает их в эту сферу и трактует их как приращения или разности, а с другой стороны, пренебрегает ими как определенными количествами после того, как оно только что применяло к ним формы и законы конечных величин.

Я приведу еще самое существенное о попытках геометров устранить эти затруднения.

Перейти на страницу:

Все книги серии Философия в кармане

Похожие книги