Более старые аналитики меньше затрудняли себя такими сомнениями; но старания более новых аналитиков были направлены преимущественно к тому, чтобы возвратить исчисление бесконечно малых к очевидности собственно геометрического метода и с помощью этого метода достигнуть в математике строгости доказательств древних (выражения Лагранжа). Однако, так как принцип анализа бесконечного по своей природе выше, чем принцип математики конечных величин, то анализ бесконечного сам собою сразу же должен был отказаться от того рода очевидности, подобно тому как философия также не может притязать на ту отчетливость, которой обладают науки о чувственном, например естественная история, или подобно тому, как еда и питье считаются более понятными вещами, чем мышление и постижение посредством понятия (Begreifen). Поэтому нам придется говорить лишь о стараниях достигнуть строгости доказательств древних.
Некоторые математики пытались обойтись совершенно без понятия бесконечного и дать без него то, что казалось связанным с его употреблением. Лагранж, например, рассказывает о методе, изобретенном Ланденом, и говорит о нем, что он является чисто аналитическим и не употребляет бесконечно малых разностей, а сначала вводит различные значения переменных величин и в дальнейшем приравнивает их между собою. Лагранж, впрочем, заявляет, что в этом методе утрачиваются свойственные дифференциальному исчислению преимущества, а именно простота метода и легкость действия. Это – прием, в котором есть нечто соответственно тому, из которого исходит Декартов метод касательных, о котором нам придется ниже еще говорить подробнее. Здесь можем заметить, что в общем виде сразу ясно, что этот прием, заключающийся в том, чтобы придавать переменным величинам различные значения и затем приравнивать их между собою, принадлежит вообще к другому кругу математической трактовки, чем сам метод дифференциального исчисления, и им не выделяется подлежащее далее более пристальному рассмотрению своеобразие того простого отношения, к которому сводится действительное, конкретное определение этого исчисления, а именно – отношения производной функции к первоначальной.
Более ранние из новых математиков, как, например, Ферма, Барроу и др., которые впервые пользуются бесконечно малыми в том применении, которое позднее привело к разработке дифференциального и интегрального исчисления, а затем также Лейбниц и последующие математики, равно как и Эйлер, всегда откровенно высказывались, что считают дозволительным отбрасывать произведения бесконечно малых разностей так же, как и их высшие степени, только на том основании, что они относительны, по сравнению с низшими порядками исчезают. Исключительно на этом соображении покоится у них основная теорема, а именно определение того, что такое дифференциал произведения или степени, ибо к этому сводится все теоретическое учение. Остальное есть отчасти механизм действий, отчасти же приложение, которое, однако, как мы покажем далее, на самом деле представляет более высокий или, лучше сказать, единственный интерес. Относительно же того вопроса, который мы рассматриваем теперь, следует здесь привести лишь то элементарное соображение, что на основании того же рассуждения о незначительности принимается как основная теорема о кривых, что элементы кривых, а именно приращения абсциссы и ординаты, имеют между собою то же отношение, как подкасательная и ордината. С целью получить подобные треугольники дуга, составляющая наряду с двумя приращениями третью сторону того треугольника, который справедливо назывался когда-то характеристическим треугольником, рассматривается как прямая линия, как часть касательной, и потому одно из приращений – как доходящее до касательной. Эти допущения поднимают, с одной стороны, вышеуказанные определения выше природы конечных величин; но, с другой стороны, здесь применяется к моментам, называемым теперь бесконечными, такой прием, который значим лишь относительно конечных величин и при котором мы не имеем права чем-либо пренебрегать на основании его незначительности. Затруднение, тяготеющее над методом, остается при таком образе действия во всей своей силе.