Родственным и тем не менее отличным от приравнивания разнородных определений оказывается само по себе неопределенное и совершенно безразличное утверждение, что бесконечно малые части одного и того же целого равны между собой. Однако примененное к разнородному внутри себя предмету, т. е. к предмету, который обременен сущностной неравномерностью определения величин, это утверждение приводит к содержащемуся в теореме высшей механики своеобразно превратному положению, что в равные и притом бесконечно малые промежутки времени проходят бесконечно малые части кривой в равномерном движении, причем утверждение это касается такого движения, в котором в равные конечные, т. е. существующие части времени, проходят конечные, т. е. существующие неравные части кривой, т. е., стало быть, касается движения, которое как существующее неравномерно и признается таковым. Это положение есть словесное выражение того, чтó должен означать собой аналитический член, получающийся в приведенном выше разложении формулы неравномерного, но, впрочем, соответствующего некоторому закону движения. Более ранние математики старались выразить результаты вновь изобретенного исчисления бесконечно малых, которое и без того всегда имело дело с конкретными предметами, в словах и положениях и изобразить их геометрически, главным образом для того, чтобы применять их для доказательства теорем по обычному способу. Члены математической формулы, на которые анализ разлагал величину предмета, например движения, получали, таким образом, предметное значение, например значение скорости, ускоряющей силы и т. п. Они должны были, согласно такому значению, доставлять правильные положения, физические законы, и сообразно их аналитической связи должны были определяться и их объективные связи и отношения, как, например, что в равномерно ускоренном движении существует особая пропорциональная временам скорость, к которой кроме того всегда присоединяется приращение, сообщаемое силой тяжести. Такие положения приводятся в новейшей, получившей аналитическую форму механике исключительно как результаты исчисления, причем она не заботится о том, имеют ли они для себя и в самом себе реальный смысл, т. е. такой, которому соответствует существование, не заботится и о том, чтобы это доказать. Трудность сделать понятной связь таких определений, когда их берут в явно реальном смысле, например объяснить переход от просто равномерной (schlechtgleichförmigen) скорости к равномерному ускорению, считается совершенно устраненной аналитическим рассмотрением, в котором указанная связь есть простое следствие прочного отныне авторитета действий исчисления. Нахождение законов, выходящих за пределы опыта, т. е. нахождение положений о существовании, не имеющих существования, единственно лишь путем вычисления, выдается за торжество науки. Но в первое, еще наивное время исчисления бесконечно малых математики всячески старались указать и разъяснить самостоятельный реальный смысл этих представленных в геометрических построениях определений и положений и применять их в таком смысле для доказательства главных положений, о которых шла речь (ср. Ньютоново доказательство основного положения его теории тяготения в Princ. mathemat. philosophiae naturalis, lib. I, sect. II, prop. I, с «Астрономией» Шуберта{49} (изд. 1-е, т. III, § 20), в которых признается, что дело обстоит не совсем, так, т. е. что в пункте, составляющем самый нерв доказательства, дело обстоит не так, как это принимает Ньютон).

Нельзя отрицать, что в этой области многое, главным образом из-за туманного понятия бесконечно малого, было принято в качестве доказательства только на том основании, что то, чтó получалось, всегда было заранее известно, и доказательство, построенное таким образом, что получалось это заранее известное, создавало по крайней мере видимость остова доказательства, которую все еще предпочитали одной лишь вере или одному лишь опытному знанию. Но я не колеблясь скажу, что рассматриваю эту манеру просто как фокусничество и жонглирование доказательствами и причисляю к такого рода фокусничанию даже Ньютоновы доказательства, в особенности принадлежащие к только что приведенным, за которые превозносили Ньютона до небес и ставили его выше Кеплера, утверждая, что первый математически доказал то, чтó второй нашел лишь опытным путем.

Перейти на страницу:

Все книги серии Всемирное наследие

Похожие книги