Данное нами изложение взглядов можно считать достаточным для того, чтобы подчеркнуть характерное свойство того отношения величин, которое служит предметом рассматриваемого здесь особого вида исчисления. Излагая эти взгляды, мы могли ограничиться простыми задачами и способом их решения; и не было бы ни целесообразно для определения понятия (а дело идет здесь единственно об этом определении), ни под силу автору обозреть всю сферу так называемого применения дифференциального и интегрального исчисления и индукцию, согласно которой указанный нами принцип лежит в основе этих видов исчисления, завершить посредством сведéния всех их задач и решений последних к этому принципу. Но изложение достаточно показало, что, как каждый особый вид исчисления имеет своим предметом особую определенность или особое отношение величины и это отношение конституирует сложение, умножение, возведение в степень и извлечение корня, счет посредством логарифмов, рядов и т. д. – точно так же обстоит дело и с дифференциальным и интегральным исчислением; для присущего этому исчислению отношения наиболее подходящим названием было бы отношение степеннóй функции к функции ее разложения или возведения в степень, так как это название всего ближе к пониманию сущности дела. Но как в этом исчислении вообще применяются также действия в соответствии с другими отношениями величин, например сложение и т. д., так в нем применяются и отношения логарифмов, круга и рядов, в особенности для того, чтобы сделать более удобными выражения ради требуемых действий выведения первоначальных функций из функций, получающихся в результате разложения в ряд. Дифференциальное и интегральное исчисление имеет, правда, ближайший общий с формой ряда интерес – определить те разлагаемые функции, которые в рядах называются коэффициентами членов; но в то время, как интерес этого исчисления направлен лишь на отношение первоначальной функции к ближайшему коэффициенту ее разложения, ряд стремится представить некоторую сумму в виде множества членов, расположенного по степеням, снабженным этими коэффициентами. Бесконечное, имеющееся в бесконечном ряде, неопределенное выражение отрицательности определенного количества вообще, не имеет ничего общего с утвердительным определением, находящимся в бесконечном этого исчисления. Точно так же бесконечно малое как приращение, посредством которого разложение принимает форму ряда, есть лишь внешнее средство для такого разложения, и его так называемая бесконечность не имеет никакого другого значения, кроме значения такого средства; так как ряд на самом деле не есть тот ряд, который требуется, то он приводит к некоторой избыточности, вновь устранить которую стоит лишнего труда. От этого лишнего труда не свободен и метод Лагранжа, который вновь прибег главным образом к форме ряда, хотя в том, что называют применением, благодаря этому методу проявляется подлинное отличительное свойство [высшего анализа], так как, не втискивая в предметы форм dx, dy и т. д., метод Лагранжа прямо указывает ту часть [этих предметов], которой присуща определенность производной функции (функции разложения), и этим обнаруживает, что форма ряда здесь вовсе не то, о чем идет речь[43].

Примечание 3Еще другие формы, связанныес качественной определенностью величины

Бесконечно малое дифференциального исчисления дано в своем утвердительном смысле как качественная определенность величины, а относительно нее было подробно показано, что в этом исчислении она наличествует не только как степеннáя определенность вообще, но как особенная степеннáя определенность отношения некоторой степеннóй функции к степеннóму члену разложения. Но качественная определенность имеется еще и в другой, так сказать, более слабой форме, и эту последнюю, равно как связанное с ней применение бесконечно малых и их смысл в этом применении, следовало бы еще рассмотреть в настоящем примечании.

Перейти на страницу:

Все книги серии Всемирное наследие

Похожие книги