V. По происхождению своему числа и величины столь же первозданны, как первозданно само бытие, что прямо следует из того, что было сказано о пребывании в каждой части пространства всех форм и в каждой форме всех чисел. Что же касается до происхождения чисел в сознании человека, т. е. до порядка вступления их в это сознание из внешней природы, то немногое об этом было сказано уже нами ранее[12], а сказать больше без предварительных специальных исследований было бы затруднительно. Столь же затруднительно сказать что-либо и о том назначении, которое выполняют числа в природе. Можно предположить только, что числа облегчают, быть может, даже делают возможным соотношения и взаимнодействия между частями природы и сообщают постоянную закономерную правильность этим соотношениям и взаимнодействиям. Так можно думать потому, что число участвует во всех взаимнодействиях и без него – без большего, меньшего и равного, без двойного, тройного и т. д. – мы не можем представить себе, чтобы совершилось что-либо, и едва ли это непредставимое совершалось бы в действительной природе.

VI. Типов чисел и величин несколько, и все они двойного и противоположного характера, т. е. каждый тип развивается из другого через его отрицание. Таковы числа и величины целые и дробные, положительные и отрицательные, соизмеримые и несоизмеримые, рациональные и иррациональные, действительные и мнимые. Каждый из этих типов величин должен быть изучен по всем схемам разума, т. е. должен быть понят в форме своего существования, в своей сущности, в своих свойствах, в происхождении и назначении и пр. На некоторые, впрочем немногие, из этих вопросов уже находятся ответы в математике; так, она уже учит о происхождении и свойствах дробных, отрицательных и мнимых величин. Но это только две стороны бытия их, и ими не ограничивается оно.

VII. Наконец, изучая количественную сторону чисел, следует остановиться на вопросе – как следует понимать отношение какого-либо числа, положим двух, к различным, по-видимому отдельным, проявлениям этого числа; т. е. следует ли думать, что каждое из чисел бесчисленное множество раз повторяется в природе и каждое из таких повторений самостоятельно, не зависит от всех других повторений; или же все эти повторения суть одно? Есть ли, напр., одна двойственность в природе, одно число два, или их бесконечное множество. Второй вопрос, который предстоит разрешить в этой форме науки, состоит в следующем: все числа, какие существуют в природе, и притом всех типов, в том виде, как мы знаем их, могут взаимно переходить друг в друга, происходить одно от другого. Так, два переходит в три через прибавление единицы, рациональное переходит в иррациональное через извлечение из него корня (3 в √З), действительная величина в мнимую (-1 в √-1) и т. д. Теперь спрашивается: эти взаимно происходящие друг от друга числа, откуда происходят все, т. е. что есть первоисточник чисел и величин, какое из них есть первочисло? и, во-вторых, как именно это первочисло перешло и переходит во все другие числа, т. е. через какой процесс и какою силою? Мы не решаемся ответить что-либо на эти вопросы и только указываем на них как на необходимые в науке, на которые должен быть дан ответ.

VIII. Поняв число в самом себе, следует понять его отношение к другим сторонам бытия, т. е. то, как оно соединяется с ними во всякой отдельной пребывающей вещи. По числу сторон бытия это учение распадается на учение об отношении числа к существованию и его видам; далее – к сущности, т. е. к материи и форме в существующем, к изменению и процессу в совершающемся; затем – к свойствам или отношениям; к происхождению или причине; к следствию или к цели (когда следствие бывает в то же время и целью); к сходству и различию и, наконец, к величине.

На этом общем учении о количестве, как на своем основании, должна покоиться чистая математика как учение о различных величинах, их соотношениях, свойствах и, наконец, о различных действиях над ними, которые все основаны на точном понимании этих свойств и соотношений.

Перейти на страницу:

Все книги серии Bibliotheca Ignatiana

Похожие книги