IX. Перейдем теперь к двум промежуточным формам, лежащим между учением о величинах вообще и между учением о величинах в их проявлении в природе, – к Геометрии и к Механике. Геометрия есть учение о пространстве и формах его; механика есть учение о движении как чистом соединении пространства и времени. Для соответствия недостает здесь учения о времени как третьего члена, отвечающего первому (учению о формах), который изучает один из двух элементов движения и одно из двух основных условий бытия. Где причина этого недостатка? В том ли, что время однородно и не имеет форм? Но и пространство также однородно, а формы, ему присущие, могут заменяться во времени чем-либо другим, что соответствует этим формам и столь же изучимо, как они. В вечной ли подвижности, текучести времени? Но эта текучесть столь правильна и постоянна, что именно она наводит мысль на присутствие здесь какого-то закона? Трудно ответить на все эти вопросы, а с тем вместе и трудно сказать, есть ли недостающее учение о времени необходимый и неизбежный недостаток в человеческом понимании или же временный и восполнимый, происходящий от того, что не пришла на мысль человеку какая-то идея, которая есть и ждет только своего открытия.

Что касается до учения о пространстве и его формах, то в Пан-геометрии, идею которой создал наш великий геометр[13], мы имеем четвертый и последний фазис этой науки – высший, до которого она может развиться, не изменяя своей природы (т. е. оставаясь учением о пространстве и его формах). С завершением этого фазиса, в который теперь только вступает геометрия, будет исчерпано содержание этой науки и понят окончательно предмет ее. Таким образом, в области человеческого понимания это будет первый образец законченной науки, первый случай, когда разум остановится, потому что ему некуда далее идти, нечего больше узнавать. Первый фазис ее был тот, который предшествовал Эвклиду и завершился в нем: это период, когда в сознании человека медленно и с трудом возникали первые геометрические понятия – понятие кривизны, прямизны, тожества в изменении направления и пр. Мы говорили уже ранее о том[14], как возникали эти понятия, именно: как постепенно отвлекалось в сознании человека свойство предмета от самого предмета и как, раз совершив это отвлечение – разум стал комбинировать свойства и предметы как отдельные, самостоятельные сущности. Напр., как, наблюдая в природе линии более кривые и менее кривые, он отвлек это свойство от линий и получил понятие кривизны как непостоянства в направлении; а раз получив это понятие – стал изменять его в своем сознании произвольно, уже не руководясь наблюдаемым в природе. Так, мысленно уничтожив эту кривизну, он получил геометрическое понятие прямой линии как линии с тожественным, никогда не изменяющимся направлением, а придав изменению кривизны характер постоянства – создал понятие окружности. Создав же эти геометрические понятия о формах, или, что то же, найдя геометрические определения этих форм, он уже стал на тот путь, который бессознательно и невольно привел его к открытию геометрических теорем. Второй фазис в развитии геометрии наступил тогда, когда она от изучения форм с тожественным направлением (прямая и ее сочетания – треугольник, параллельные и пр.) и с тожественно изменяющимся направлением (окружность) перешла к изучению кривых линий с непостоянным направлением, но, однако же, правильно, постепенно видоизменяющимся, каковы эллипсис, парабола, гипербола, циклоиды и др. Нет сомнения, что этот порядок кривых далеко еще не изучен во всех своих формах; т. е. что есть еще много неоткрытых форм пространства с правильным изменением в кривизне, которые (формы) предстоит изучить науке. Но это изучение будет расширением науки, а не развитием ее в новые высшие формы, и оно может продолжаться независимо от этого развития, подобно тому как боковое ветвление дерева совершается независимо от его роста вверх. Третий фазис в развитии учения о пространстве наступил с открытием аналитической геометрии (Декарт), когда к исследованию соотношений и свойств пространственных форм было приложено учение о величинах вообще (Алгебра) и через рассмотрение тех из этих величин, в которых выражаются пространственные отношения, и через свободное комбинирование их на основании их собственных свойств как алгебраических количеств получилась возможность предусматривать новые, неизвестные дотоле пространственные отношения, и притом исчерпывающим образом. Наконец, четвертый и последний фазис в развитии геометрии наступил, как мы уже заметили, с открытием возможности и необходимости изучать формы пространства не трех только измерений, как это было до сих пор и как это допускают представляющие способности человека, более узкие, нежели способности мышления, но п измерений. Это обобщение в геометрии можно сравнить с тем обобщением, которое наступило для учения о величинах с открытием алгебры.

Перейти на страницу:

Все книги серии Bibliotheca Ignatiana

Похожие книги