Это свойство увеличиваться и уменьшаться, ошибочно принимаемое за выражение сущности числа и величины, было ошибочно введено в их определение, которое в действительности должно стремиться к раскрытию природы определяемого, а не к указанию только на его признак. Да и ошибочно думать, что это свойство присуще всем величинам и что поэтому величина есть то, что может становиться больше и меньше. Отношение окружности к диаметру неизменно; оно не может ни увеличиваться, ни уменьшаться и, однако же, есть величина. И напротив, есть многое в природе, что способно увеличиваться и уменьшаться, но что, однако же, не есть величина, напр. желание и чувство гнева.

Что касается до модусов (образов) увеличения и уменьшения, то их несколько: увеличение и уменьшение на сколько-нибудь (а + b и а – b) и увеличение и уменьшение во сколько-нибудь раз. Последний модус имеет еще две разновидности: увеличение и уменьшение не само на себя (а × b и а : b) и на само себя2 и √a). Оба основные модуса распадаются еще на две формы: увеличение и уменьшение на что-нибудь или во сколько-нибудь один раз и неопределенное число раз; вторая форма дает ряды, к числу которых относится прогрессия арифметическая (2. 4. 6. 8…) и прогрессия геометрическая (2. 4. 8. 16…).

В этой способности вообще увеличиваться и уменьшаться есть еще одно замечательное свойство, присущее некоторым величинам: это свойство бесконечно увеличиваться или уменьшаться вечно приближаясь и никогда не достигая некоторой величины. Изучение этого явления развилось в математике в особую форму – в теорию пределов. Напр., 0,999… вечно увеличиваясь постоянно приближается к единице, но никогда не достигает ее; или 0,00…01 вечно уменьшаясь никогда не превращается в нуль.

Перейти на страницу:

Все книги серии Bibliotheca Ignatiana

Похожие книги