На первой иллюстрации изображен квадрат со вписанной в него окружностью, в которую вписан треугольник
Затем он перешел к следующим объемным фигурам.
(источник: FMC)
(источник: FMC)
Далее без дополнительных объяснений он приводит следующее соотношение, полученное тем же способом, что и в случае с плоскими фигурами:
После этого он выражает объем удвоенного свода
Это равносильно
Иными словами,
А так как
Пьеро делла Франческа нашел верное решение, что можно доказать с помощью интегрального исчисления.
(источник: FMC)
Если мы рассечем фигуру плоскостью
Следовательно, площадь сечения фигуры плоскостью
Объем фигуры будет равен
Задачу о нахождении объема общей части двух перпендикулярных цилиндров равного диаметра рассматривал Архимед в своем «Методе». Однако этот труд, утерянный во времена Античности, был обнаружен лишь в 1906 году на палимпсесте — древней рукописи с текстами религиозных песнопений, где сохранились следы более раннего текста, принадлежавшего Архимеду. Нет никаких доказательств тому, что этот труд Архимеда был известен во времена Пьеро делла Франческа, поэтому неизвестно, на какие источники он опирался в своих вычислениях.
Поэтому Пьеро делла Франческа можно считать математиком первой величины, обладавшим великолепным пространственным и геометрическим мышлением. Его идеи в области математики и искусства, выраженные в его книгах, и видение пространства и фигур, которое мы можем наблюдать на его картинах, отразили дух той удивительной эпохи конца кватроченто, когда искусство и математика шествовали рука об руку.
В эпоху Возрождения произошло слияние трех течений, что упростило изучение многогранников. С одной стороны, с возвратом интереса к Античности стало уделяться особое внимание этим геометрическим фигурам, которые рассматривал еще Евклид в «Началах» с математической точки зрения, а Платон в своих диалогах — с космологической точки зрения. С другой стороны, с распространением математической перспективы впервые стало возможным «увидеть» эти фигуры на рисунках, и они стали изучаться более подробно.
Так, в городе Урбино жили и работали два автора, которые уделяли этому вопросу наибольшее внимание, — Пьеро делла Франческа и Лука Пачоли. Исследование многогранников, изложенное Пьеро делла Франческа в его «Трактате об абаке», и приведенные им примеры Пачоли использовал в «Сумме арифметики».
Позднее мы снова обнаружим совпадения в «Книге о пяти правильных телах» Пьеро делла Франческа и «О божественной пропорции» Пачоли, которые, по мнению Вазари, представляли собой плагиат со стороны Пачоли, несмотря на то что Пьеро делла Франческа в своей книге придерживался строго математического подхода, а Пачоли — мистико-теологического. Пьеро делла Франческа пытается если не доказать, то объяснять приведенные им утверждения и обосновывать их с теоретической точки зрения, а Пачоли оправдывает отсутствие доказательств в своей книге тем, что «ясно выраженное не требует доказательств».
Несмотря на различные подходы этих авторов и возможный плагиат, обе книги объединяет великолепное качество иллюстраций. Всё в работе Пьеро делла Франческа указывает на то, что их выполнил он сам, а поистине великолепные иллюстрации в труде «О божественной пропорции» сделал Леонардо да Винчи. Одна из них хранится в Национальной библиотеке Испании в Мадриде.